File size: 6,820 Bytes
f3e6dfe
1b9b8b6
071fa8f
f3e6dfe
bfae658
f3e6dfe
1b9b8b6
f3e6dfe
 
ac48997
ffeaeb6
1b9b8b6
ac48997
 
c70e5b6
1b9b8b6
 
f3e6dfe
 
1b9b8b6
f3e6dfe
1b9b8b6
c70e5b6
1b9b8b6
 
 
 
f3e6dfe
 
254099a
ac48997
 
 
1622188
1b9b8b6
c70e5b6
 
 
 
 
 
1b9b8b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
071fa8f
 
 
 
 
 
 
1b9b8b6
59df494
071fa8f
 
 
 
 
 
 
 
e9e157a
1b9b8b6
071fa8f
f3e6dfe
1b9b8b6
 
fd29657
1b9b8b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7104e50
1b9b8b6
7104e50
 
 
 
1b9b8b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83fd180
 
84e1526
eaf6c27
 
1b9b8b6
eaf6c27
 
1b9b8b6
 
1622188
 
 
ec9d966
 
 
 
 
1b9b8b6
ec9d966
1b9b8b6
5254230
 
ec9d966
 
1b9b8b6
c70e5b6
1b9b8b6
 
 
ec9d966
c70e5b6
 
 
1b9b8b6
 
 
 
 
 
 
 
 
 
 
 
 
83fd180
071fa8f
1b9b8b6
 
 
 
 
 
1622188
 
 
 
bfae658
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import uuid
import numpy as np
import pandas as pd
import streamlit as st
import huggingface_hub as hh
from datetime import datetime

# read files from HF
OWNER = "Booking-com"
MAX_SUBMISSIONS = 100

REPO_ID = f"{OWNER}/streamlit-review-ranking-leaderboard"
RESULTS_REPO = f"{OWNER}/results"
GT_REPO = f"{OWNER}/accommodation-reviews-gt"
GROUPS_INFO_REPO = f"{OWNER}/rectour2024-groups"

TOKEN = os.environ.get("HF_TOKEN")
CACHE_PATH = os.getenv("HF_HOME", ".")

EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
TEMP_RESULTS_PATH = os.path.join(CACHE_PATH, "temp-results")
GT_PATH = os.path.join(CACHE_PATH, "gt")
GROUPS_INFO_PATH = os.path.join(CACHE_PATH, "groups-info")

REQUIRED_COLUMNS = ['accommodation_id', 'user_id'] + [f'review_{i}' for i in range(1, 11)]

API = hh.HfApi(token=TOKEN)


def restart_space():
    API.restart_space(repo_id=REPO_ID)


# download the GT - shouldn't update too frequent
hh.snapshot_download(
    repo_id=GT_REPO, local_dir=GT_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
    token=TOKEN
)


def refresh_data():
    hh.snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
        token=TOKEN
    )

    hh.snapshot_download(
        repo_id=GROUPS_INFO_REPO, local_dir=GROUPS_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
        token=TOKEN
    )


refresh_data()


def get_match_index(row):
    for i in range(1, 11):
        if row['review_id'] == row[f'review_{i}']:
            return i
    return np.inf


def calculate_metrics(df_pred):
    df_gt = pd.read_csv(os.path.join(GT_PATH, 'test_matches.csv'))
    if len(df_pred) != len(df_gt):
        raise Exception("Your predictions file should contain {} rows, only {} rows were found in the file".format(
            len(df_gt), len(df_pred)
        ))

    df_merged = pd.merge(df_gt, df_pred, how='left', on=['accommodation_id', 'user_id']).fillna('')
    df_merged['match_index'] = df_merged.apply(get_match_index, axis=1)
    df_merged['mrr10'] = df_merged['match_index'].apply(lambda x: 1/x)
    df_merged['precision10'] = df_merged['match_index'].apply(lambda x: 1 if x != np.inf else 0)

    return df_merged['mrr10'].mean(), df_merged['precision10'].mean()


def get_group_name_by_email(email):
    df = pd.read_csv(os.path.join(GROUPS_INFO_PATH, 'groups_data.csv'))
    df_email = df[df['email'] == email].reset_index(drop=True)
    if len(df_email) > 0:
        return df_email.iloc[0]['group_name']
    else:
        raise Exception("E-mail is not valid")


def validate_pred_file(df_pred):
    for col in REQUIRED_COLUMNS:
        if col not in df_pred.columns:
            raise Exception(f"Column {col} not in prediction file")


def get_revision(df_results, email):
    df_group_data = df_results[df_results['email'] == email]
    curr_revision = 0
    if len(df_group_data) > 0:
        curr_revision = df_group_data['revision'].max()
        if curr_revision >= MAX_SUBMISSIONS:
            raise Exception("We're sorry but you reached your maximal number of submissions")
    return curr_revision


def get_results_dataframe():
    dfs = []
    for f in os.listdir(EVAL_RESULTS_PATH):
        if f.endswith('.csv'):
            dfs.append(pd.read_csv(os.path.join(EVAL_RESULTS_PATH, f)))
    return pd.concat(dfs)


def upload_results(group_email, group_name, model_name, revision, mrr10, precision10):
    submission_date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

    if not os.path.exists(TEMP_RESULTS_PATH):
        os.mkdir(TEMP_RESULTS_PATH)

    df_temp_results = pd.DataFrame({'email': [group_email], 'group_name': [group_name], "model_name": [model_name],
                                    "submission_date": [submission_date], "revision": [revision], "MRR@10": [mrr10],
                                    "Precision@10": [precision10], 'set_name': ["test set"]})
    temp_results_fn = str(uuid.uuid4()) + '.csv'
    temp_path = os.path.join(TEMP_RESULTS_PATH, temp_results_fn)
    df_temp_results.to_csv(temp_path, index=False)
    hh.upload_file(path_or_fileobj=temp_path, repo_id=RESULTS_REPO, token=TOKEN, repo_type="dataset",
                   path_in_repo=temp_results_fn)


def render():
    st.set_page_config(page_title="RecTour2024 - Booking.com Review Ranking Challenge Leaderboard", layout="wide")
    st.title("πŸ† RecTour2024 Leaderboard")

    leaderboard_tab, submission_tab = st.tabs(["Leaderboard", "Submission"])

    # leaderboard area
    if leaderboard_tab.button("Refresh"):
        refresh_data()

    df_results = get_results_dataframe()
    leaderboard_tab.dataframe(df_results.drop(columns=['email']).sort_values(['set_name', 'MRR@10'],
                                                                             ascending=[True, False]))

    # submission area
    group_email = submission_tab.text_input(label="Group email", value="")
    model_name = submission_tab.text_input(label="Model name", value="")
    pred_file = submission_tab.file_uploader(label="Upload your prediction file",
                                             help="Upload a csv.zip file, in pandas this can be achieved "
                                                  "with df.to_csv(<file_path>, compression='zip')",)
    if submission_tab.button("Upload"):
        if not pred_file:
            submission_tab.markdown("no file was submitted!")
        else:
            try:
                group_name = get_group_name_by_email(group_email)
                df_pred = pd.read_csv(pred_file, compression='zip')
                validate_pred_file(df_pred)
                mrr10, precision10 = calculate_metrics(df_pred)
                revision = get_revision(df_results=df_results, email=group_email) + 1  # generate next revision id
                upload_results(group_email=group_email, group_name=group_name, model_name=model_name, revision=revision,
                               mrr10=mrr10, precision10=precision10)

                submission_tab.markdown("## THANK YOU FOR YOUR SUBMISSION!")
                submission_tab.markdown("Here are your submission details:")
                submission_tab.markdown("**Group name:** " + group_name)
                submission_tab.markdown("**Model name:** " + model_name)
                submission_tab.markdown("**Revision:** " + str(revision) +
                                        f" (out of {MAX_SUBMISSIONS} allowed submissions)")

                submission_tab.write("### Submission results")
                submission_tab.markdown("**MRR@10:** {:.4f}".format(mrr10))
                submission_tab.markdown("**Precision@10:** {:.4f}".format(precision10))
            except Exception as e:
                submission_tab.markdown(e)


if __name__ == "__main__":
    render()