Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,972 Bytes
8824f88 2213339 8824f88 730ef92 0ce20c6 66b837f 8824f88 a5c0568 a174343 8824f88 31bf44d 0737a9d 34353a1 0737a9d 8824f88 c5ac75a 730ef92 c5ac75a fac8170 c4a2b23 8824f88 ecbb198 fe36abc 8824f88 5fa70db d0af199 2700bb1 5fa70db 2698250 d0af199 8322405 09d4545 8824f88 730ef92 abf5e5e 42b678e abf5e5e 730ef92 fe36abc 8824f88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
#!/usr/bin/env python
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8192"))
if torch.cuda.is_available():
model_id = "BramVanroy/GEITje-ultra"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.06,
top_p: float = 0.95,
top_k: int = 40,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(height=450,
label="GEITje-ultra",
show_share_button=True,
avatar_images=(None, 'geitje-ultra-avatar.png')),
# textbox=gr.Textbox(value="Typ een bericht…"),
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.05,
maximum=1.2,
step=0.05,
value=0.2,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
examples=[
["""Vraagje: welk woord hoort er niet in dit rijtje thuis: "auto, vliegtuig, geit, bus"?"""],
["Schrijf een nieuwsbericht voor De Speld over de inzet van een kudde geiten door het Nederlands Forensisch Instituut"],
["Wat zijn 3 leuke dingen om te doen als ik een weekendje naar Friesland ga?"],
["Met wie trad clown Bassie op?"],
["Kan je naar de maan fietsen?"],
["Wat is het belang van open source taalmodellen?"],
["""```
Wortelverkopers krijgen miljoenenboete voor ongeoorloofd samenspannen
Door onze economieredactie
14 dec 2023 om 12:58
Update: 20 uur geleden
162 reacties
Delen
Toezichthouder ACM heeft een Nederlands wortelkartel aangepakt. Vier telers en verkopers van wortelen krijgen samen ruim 2,5 miljoen euro boete vanwege ongeoorloofde afspraken over het verdelen van de markt.
Het gaat om telers en verkopers Laarakker, VanRijsingen, Veco en Verduyn. De vier bedrijven verkopen waspeen en Parijse wortelen aan conserven- en diepvriesfabrikanten in Nederland, België en Duitsland. Waspeen wordt vaak verkocht in potten of blikken in een mix met erwtjes.
De vier bedrijven hadden in 2018 afgesproken dat ze tien jaar lang niet overal de concurrentie met elkaar zouden aangaan. Zo zou Veco tien jaar lang geen waspeen telen of verkopen. Daarnaast zouden Laarakker, VanRijsingen en Verduyn juist de Parijse wortelen links laten liggen.
Ook betaalden de andere wortelverkopers Veco ter compensatie van de afspraken. Laarakker en Veco maakten ook nog afzonderlijke afspraken over de levering van Parijse wortelen aan Duitse klanten.
Zulke afspraken zijn verboden. Als concurrentie door die samenwerking achterwege blijft en er dus sprake is van een kartel, betalen kopers mogelijk een hogere prijs, stelt de ACM.
Twee van de wortelbedrijven werkten mee door meer informatie over de ongeoorloofde afspraken te delen met de toezichthouder. Daardoor kregen zij een lagere boete.
```
Vat bovenstaand artikel samen"""]
],
title="🐐 GEITje ultra 🤖",
description="""\
GEITje ultra is een geavanceerde versie van GEITje, verder getraind op uitgebreide chat datasets en ook op preferentiedatasets om beter te aligneren met het gedrag van een gewenste chatbot, in dit geval gpt-4-turbo.
Dit model is een verderzetting op basis van "GEITje 7B: een groot open Nederlands taalmodel." Deze demo is ook sterk gebaseerd op de originele <a href="https://huggingface.co/spaces/Rijgersberg/GEITje-7B-chat">Geitje Chat</a> demo, die dan weer op deze [mistral demo](https://huggingface.co/spaces/hysts/mistral-7b) gebaseerd is.
Hoewel dit model gealigneerd is met AI feedback (gpt-4-turbo), kan en zal het nog steeds fouten maken, leugens vertellen, redeneringsfouten maken, en misschien wel stoute dingen vertellen. Gebruik dit model dus op eigen risico en controleer de output zelf!
Meer info:
- <a href="https://github.com/Rijgersberg/GEITje">📄 basismodel GEITje op GitHub</a>
- <a href="https://huggingface.co/BramVanroy/GEITje-ultra-sft">GEITje ultra SFT</a>: Chat-tuned versie van GEITje met uitgebreidere chat datasets dan de originele GEITje chat. Niet echt aangeraden voor gebruik - het is een tussenversie om tot de DPO versie (geitje-ultra) te komen
- <a href="https://huggingface.co/BramVanroy/GEITje-ultra">GEITje ultra</a>: Het model in deze demo, gebaseerd op GEITje ultra SFT en verder gealigneerd met AI feedback (gpt-4-turbo)
""",
submit_btn="Genereer",
stop_btn="Stop",
retry_btn="🔄 Opnieuw",
undo_btn="↩️ Ongedaan maken",
clear_btn="🗑️ Wissen",
)
with gr.Blocks(css="style.css") as demo:
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|