ikanha's picture
Update app.py
3446b50 verified
raw
history blame
11.6 kB
import os
import cv2
import gradio as gr
import numpy as np
import json
import pickle
from PIL import Image
import torch
from torch.nn.utils.rnn import pad_sequence
from transformers import BridgeTowerProcessor
from tqdm import tqdm
from bridgetower_custom import BridgeTowerTextFeatureExtractor, BridgeTowerForITC
import faiss
import webvtt
from pytube import YouTube
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.formatters import WebVTTFormatter
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
model_name = 'BridgeTower/bridgetower-large-itm-mlm-itc'
model = BridgeTowerForITC.from_pretrained(model_name).to(device)
text_model = BridgeTowerTextFeatureExtractor.from_pretrained(model_name).to(device)
processor = BridgeTowerProcessor.from_pretrained(model_name)
def download_video(video_url, path='/tmp/'):
yt = YouTube(video_url)
yt = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
if not os.path.exists(path):
os.makedirs(path)
filepath = os.path.join(path, yt.default_filename)
if not os.path.exists(filepath):
print('Downloading video from YouTube...')
yt.download(path)
return filepath
# Get transcript in webvtt
def get_transcript_vtt(video_id, path='/tmp'):
filepath = os.path.join(path,'test_vm.vtt')
if os.path.exists(filepath):
return filepath
transcript = YouTubeTranscriptApi.get_transcript(video_id)
formatter = WebVTTFormatter()
webvtt_formatted = formatter.format_transcript(transcript)
with open(filepath, 'w', encoding='utf-8') as webvtt_file:
webvtt_file.write(webvtt_formatted)
webvtt_file.close()
return filepath
# https://stackoverflow.com/a/57781047
# Resizes a image and maintains aspect ratio
def maintain_aspect_ratio_resize(image, width=None, height=None, inter=cv2.INTER_AREA):
# Grab the image size and initialize dimensions
dim = None
(h, w) = image.shape[:2]
# Return original image if no need to resize
if width is None and height is None:
return image
# We are resizing height if width is none
if width is None:
# Calculate the ratio of the height and construct the dimensions
r = height / float(h)
dim = (int(w * r), height)
# We are resizing width if height is none
else:
# Calculate the ratio of the width and construct the dimensions
r = width / float(w)
dim = (width, int(h * r))
# Return the resized image
return cv2.resize(image, dim, interpolation=inter)
def time_to_frame(time, fps):
'''
convert time in seconds into frame number
'''
return int(time * fps - 1)
def str2time(strtime):
strtime = strtime.strip('"')
hrs, mins, seconds = [float(c) for c in strtime.split(':')]
total_seconds = hrs * 60**2 + mins * 60 + seconds
return total_seconds
def collate_fn(batch_list):
batch = {}
batch['input_ids'] = pad_sequence([encoding['input_ids'].squeeze(0) for encoding in batch_list], batch_first=True)
batch['attention_mask'] = pad_sequence([encoding['attention_mask'].squeeze(0) for encoding in batch_list], batch_first=True)
batch['pixel_values'] = torch.cat([encoding['pixel_values'] for encoding in batch_list], dim=0)
batch['pixel_mask'] = torch.cat([encoding['pixel_mask'] for encoding in batch_list], dim=0)
return batch
def extract_images_and_embeds(video_id, video_path, subtitles, output, expanded=False, batch_size=2, progress=gr.Progress()):
if os.path.exists(os.path.join(output, 'embeddings.pkl')):
return
os.makedirs(output, exist_ok=True)
os.makedirs(os.path.join(output, 'frames'), exist_ok=True)
os.makedirs(os.path.join(output, 'frames_thumb'), exist_ok=True)
count = 0
vidcap = cv2.VideoCapture(video_path)
# Get the frames per second
fps = vidcap.get(cv2.CAP_PROP_FPS)
# Get the total numer of frames in the video.
frame_count = vidcap.get(cv2.CAP_PROP_FRAME_COUNT)
# print(fps, frame_count)
frame_number = 0
count = 0
anno = []
embeddings = []
batch_list = []
vtt = webvtt.read(subtitles)
for idx, caption in enumerate(tqdm(vtt, total=vtt.total_length, desc="Generating embeddings")):
st_time = str2time(caption.start)
ed_time = str2time(caption.end)
mid_time = (ed_time + st_time) / 2
text = caption.text.replace('\n', ' ')
if expanded :
raise NotImplementedError
frame_no = time_to_frame(mid_time, fps)
mid_time_ms = mid_time * 1000
# vidcap.set(1, frame_no) # added this line
vidcap.set(cv2.CAP_PROP_POS_MSEC, mid_time_ms)
print('Read a new frame: ', idx, mid_time, frame_no, text)
success, frame = vidcap.read()
if success:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
img_fname = f'{video_id}_{idx:06d}'
img_fpath = os.path.join(output, 'frames', img_fname + '.jpg')
# image = maintain_aspect_ratio_resize(image, height=350) # save frame as JPEG file
# cv2.imwrite( img_fpath, image) # save frame as JPEG file
count += 1
anno.append({
'image_id': idx,
'img_fname': img_fname,
'caption': text,
'time': mid_time_ms,
'frame_no': frame_no
})
encoding = processor(frame, text, return_tensors="pt").to(device)
encoding['text'] = text
encoding['image_filepath'] = img_fpath
encoding['start_time'] = caption.start
encoding['time'] = mid_time_ms
batch_list.append(encoding)
else:
break
if len(batch_list) == batch_size:
batch = collate_fn(batch_list)
with torch.no_grad():
outputs = model(**batch, output_hidden_states=True)
for i in range(batch_size):
embeddings.append({
'embeddings':outputs.logits[i,2,:].detach().cpu().numpy(),
'text': batch_list[i]['text'],
'image_filepath': batch_list[i]['image_filepath'],
'start_time': batch_list[i]['start_time'],
'time': batch_list[i]['time'],
})
batch_list = []
if batch_list:
batch = collate_fn(batch_list)
with torch.no_grad():
outputs = model(**batch, output_hidden_states=True)
for i in range(len(batch_list)):
embeddings.append({
'embeddings':outputs.logits[i,2,:].detach().cpu().numpy(),
'text': batch_list[i]['text'],
'image_filepath': batch_list[i]['image_filepath'],
'start_time': batch_list[i]['start_time'],
'time': batch_list[i]['time'],
})
batch_list = []
with open(os.path.join(output, 'annotations.json'), 'w') as fh:
json.dump(anno, fh)
with open(os.path.join(output, 'embeddings.pkl'), 'wb') as fh:
pickle.dump(embeddings, fh)
def run_query(video_path, text_query, path='/tmp'):
vidcap = cv2.VideoCapture(video_path)
embeddings_filepath = os.path.join(path, 'embeddings.pkl')
faiss_filepath = os.path.join(path, 'faiss_index.pkl')
embeddings = pickle.load(open(embeddings_filepath, 'rb'))
if os.path.exists(faiss_filepath):
faiss_index = pickle.load(open(faiss_filepath, 'rb'))
else :
embs = [emb['embeddings'] for emb in embeddings]
vectors = np.stack(embs, axis=0)
num_vectors, vector_dim = vectors.shape
faiss_index = faiss.IndexFlatIP(vector_dim)
faiss_index.add(vectors)
pickle.dump(faiss_index, open(faiss_filepath, 'wb'))
print('Processing query')
encoding = processor.tokenizer(text_query, return_tensors="pt").to(device)
with torch.no_grad():
outputs = text_model(**encoding)
emb_query = outputs.cpu().numpy()
print('Running FAISS search')
_, I = faiss_index.search(emb_query, 6)
clip_images = []
transcripts = []
for idx in I[0]:
# frame_no = embeddings[idx]['frame_no']
# vidcap.set(1, frame_no) # added this line
frame_timestamp = embeddings[idx]['time']
vidcap.set(cv2.CAP_PROP_POS_MSEC, frame_timestamp)
success, frame = vidcap.read()
if success:
frame = maintain_aspect_ratio_resize(frame, height=400)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
clip_images.append(frame)
transcripts.append(f"({embeddings[idx]['start_time']}) {embeddings[idx]['text']}")
return clip_images, transcripts
#https://stackoverflow.com/a/7936523
def get_video_id_from_url(video_url):
"""
Examples:
- http://youtu.be/SA2iWivDJiE
- http://www.youtube.com/watch?v=_oPAwA_Udwc&feature=feedu
- http://www.youtube.com/embed/SA2iWivDJiE
- http://www.youtube.com/v/SA2iWivDJiE?version=3&hl=en_US
"""
import urllib.parse
url = urllib.parse.urlparse(video_url)
if url.hostname == 'youtu.be':
return url.path[1:]
if url.hostname in ('www.youtube.com', 'youtube.com'):
if url.path == '/watch':
p = urllib.parse.parse_qs(url.query)
return p['v'][0]
if url.path[:7] == '/embed/':
return url.path.split('/')[2]
if url.path[:3] == '/v/':
return url.path.split('/')[2]
return None
def process(video_url, text_query, progress=gr.Progress(track_tqdm=True)):
tmp_dir = os.environ.get('TMPDIR', '/tmp')
video_id = get_video_id_from_url(video_url)
output_dir = os.path.join(tmp_dir, video_id)
video_file = download_video(video_url, path=output_dir)
subtitles = get_transcript_vtt(video_id, path=output_dir)
extract_images_and_embeds(video_id=video_id,
video_path=video_file,
subtitles=subtitles,
output=output_dir,
expanded=False,
batch_size=8,
progress=progress,
)
frame_paths, transcripts = run_query(video_file, text_query, path=output_dir)
return video_file, [(image, caption) for image, caption in zip(frame_paths, transcripts)]
description = "This Space lets you run semantic search on a video."
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Row():
with gr.Column():
video_url = gr.Text(label="Youtube url")
text_query = gr.Text(label="Text query")
btn = gr.Button("Run query")
video_player = gr.Video(label="Video")
with gr.Row():
gallery = gr.Gallery(label="Images")
gr.Examples(
examples=[
['https://www.youtube.com/watch?v=CvjoXdC-WkM','wedding'],
['https://www.youtube.com/watch?v=fWs2dWcNGu0', 'cheesecake'],
['https://www.youtube.com/watch?v=rmPpNsx4yAk', 'bunny'],
['https://www.youtube.com/watch?v=KCFYf4TJdN0' ,'sandwich'],
],
inputs=[video_url, text_query],
)
btn.click(fn=process,
inputs=[video_url, text_query],
outputs=[video_player, gallery],
)
try:
demo.queue(concurrency_count=3)
demo.launch(share=True)
except:
demo.launch()