import torch import gradio as gr from torchvision import transforms as T from torch.utils.data import DataLoader import matplotlib.pyplot as plt from PIL import Image import numpy as np classes=["Other","Anger","Contempt","Happiness","Surprise"] # load a resnet18 model pretrained on ImageNet # and turn off autograd on model's parameters def load_model(idx): model = torch.jit.load('model_2_60acc.pt',map_location=torch.device('cpu')).eval() for param in model.parameters(): param.requires_grad = False return model model=load_model(0) # preprocess data pretrained_std = torch.Tensor([0.229, 0.224, 0.225]) pretrained_mean = torch.Tensor([0.485, 0.456, 0.406]) optical_flow_t = T.Compose([ T.Resize((224,224)), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]), ]) ogpic=['ogtest0.png','ogtest1.png','ogtest2.png','ogtest3.png','ogtest4.png','ogtest5.png'] ofpic=['oftest0.jpg','oftest1.jpg','oftest2.jpg','oftest3.jpg','oftest4.jpg','oftest5.jpg'] diffpic=['difftest0.png','difftest1.png','difftest2.png','difftest3.png','difftest4.png','difftest5.png'] exp=[['ogtest0.png'],['ogtest1.png'],['ogtest2.png'],['ogtest3.png'],['ogtest4.png'],['ogtest5.png']] vid=["vidtest0.mp4","vidtest1.mp4","vidtest2.mp4","vidtest3.mp4","vidtest4.mp4","vidtest5.mp4"] actual=["Contempt","Other","Happiness","Anger","Other","Contempt"] def main(): with gr.Blocks() as demo: aa=gr.Variable(value=0) def set_example_image(img): aa.value=img return gr.Image.update(value=exp[img][0]) def predss(img): #print(Image.open(ofpic[a]).shape()) processed_img = optical_flow_t(Image.open(ofpic[aa.value])) tb = torch.unsqueeze(processed_img, dim=0) loaded_test = DataLoader(tb, batch_size=1,shuffle=False) # get predictions for i, inputs in enumerate(loaded_test): with torch.no_grad(): output = model(inputs.to(torch.device('cpu'))) # Feed Network probs = torch.nn.functional.softmax(output[0], dim=0) top5_prob, top5_idx = torch.topk(probs, 5) preds = {classes[idx]: prob.item() for idx, prob in zip(top5_idx, top5_prob)} return ogpic[aa.value],ofpic[aa.value],diffpic[aa.value],vid[aa.value], preds,actual[aa.value] gr.Markdown('''## Micro-expression recognition ''') with gr.Box(): input_image = gr.Image(type="pil", label="Input Image") example_images = gr.Dataset(components=[input_image], samples=[['ogtest0.png'],['ogtest1.png'],['ogtest2.png'],['ogtest3.png'],['ogtest4.png'],['ogtest5.png']] ,type="index") with gr.Row(): btn = gr.Button("Process") gr.Markdown('''### Original Image''') with gr.Box(): with gr.Row(): img_before = gr.Image(label="Original Image") img_after1 = gr.Image(label="Different frame") with gr.Row(): img_after = gr.Image(label="Optical flow") label_predict = gr.Label(label="Model Prediction") with gr.Box(): with gr.Row(): video = gr.Video(label="Original Video") with gr.Row(): label_actual=gr.Label(label="Actual Emotion") # events btn.click(fn=predss, inputs=[input_image], outputs=[img_before,img_after,img_after1,video,label_predict,label_actual]) example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images.components) demo.launch() if __name__ == '__main__': main()