Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import requests
|
3 |
+
import base64
|
4 |
+
from PIL import Image, ImageFilter
|
5 |
+
from io import BytesIO
|
6 |
+
from transformers import pipeline
|
7 |
+
import streamlit as st
|
8 |
+
|
9 |
+
# API Endpoint for image generation
|
10 |
+
url = "http://34.198.214.220:8000/generate/"
|
11 |
+
|
12 |
+
# Streamlit sidebar for model selection
|
13 |
+
model_option = st.sidebar.selectbox("Select Model", ["Fluently-XL-Final", "Flux-Uncensored"], index=0)
|
14 |
+
|
15 |
+
st.title("Text to Image Generator")
|
16 |
+
|
17 |
+
# Streamlit input field for prompt
|
18 |
+
prompt = st.text_input("Enter Prompt", "") # Default prompt
|
19 |
+
|
20 |
+
# Use a pipeline as a high-level helper for image classification
|
21 |
+
pipe = pipeline("image-classification", model="giacomoarienti/nsfw-classifier")
|
22 |
+
|
23 |
+
def classify_image(image):
|
24 |
+
"""
|
25 |
+
Classifies an image using the NSFW classifier.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
image: The PIL image object to be classified.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
A dictionary containing the classification results.
|
32 |
+
"""
|
33 |
+
try:
|
34 |
+
# Classify the image using the pipeline
|
35 |
+
results = pipe(image)
|
36 |
+
return results
|
37 |
+
except Exception as e:
|
38 |
+
st.error(f"Error during classification: {e}")
|
39 |
+
return None
|
40 |
+
|
41 |
+
def blur_image(image):
|
42 |
+
"""
|
43 |
+
Applies a Gaussian Blur to an image and saves it.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
image: The PIL image object to be blurred.
|
47 |
+
"""
|
48 |
+
# Apply Gaussian Blur filter to the image
|
49 |
+
blurred_image = image.filter(ImageFilter.GaussianBlur(radius=40))
|
50 |
+
|
51 |
+
# Display the blurred image
|
52 |
+
st.image(blurred_image, caption="Blurred Image", use_container_width=True)
|
53 |
+
|
54 |
+
def process_image(image):
|
55 |
+
"""
|
56 |
+
Processes the image by classifying it and applying actions based on results.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
image: The PIL image object.
|
60 |
+
"""
|
61 |
+
results = classify_image(image)
|
62 |
+
|
63 |
+
if results:
|
64 |
+
|
65 |
+
# Check if either 'porn' label > 0.7 or 'sexy' label > 0.85
|
66 |
+
porn_score = next((item['score'] for item in results if item['label'] == 'porn'), 0)
|
67 |
+
sexy_score = next((item['score'] for item in results if item['label'] == 'sexy'), 0)
|
68 |
+
if porn_score > 0.7 or sexy_score > 0.85:
|
69 |
+
blur_image(image) # Apply blur and show the blurred image
|
70 |
+
else:
|
71 |
+
st.image(image, caption="Original Image", use_container_width=True) # Show the original image even if it does not meet the threshold
|
72 |
+
else:
|
73 |
+
st.error("Error: Image classification failed.")
|
74 |
+
# Button to generate image
|
75 |
+
if st.button('Generate Image'):
|
76 |
+
payload = {
|
77 |
+
"prompt": prompt, # User input prompt
|
78 |
+
"model": model_option # Model selected by user
|
79 |
+
}
|
80 |
+
|
81 |
+
# Generate the image using the API
|
82 |
+
response = requests.post(url, json=payload)
|
83 |
+
|
84 |
+
# Check if the request was successful
|
85 |
+
if response.status_code == 200:
|
86 |
+
response_data = response.json()
|
87 |
+
|
88 |
+
# Extract the base64 image string
|
89 |
+
if "image_base64" in response_data:
|
90 |
+
base64_string = response_data["image_base64"]
|
91 |
+
|
92 |
+
# Decode the base64 string into an image
|
93 |
+
image_data = base64.b64decode(base64_string)
|
94 |
+
image = Image.open(BytesIO(image_data))
|
95 |
+
|
96 |
+
# Process the generated image
|
97 |
+
process_image(image)
|
98 |
+
|
99 |
+
else:
|
100 |
+
st.error("No image data found in the response!")
|
101 |
+
else:
|
102 |
+
st.error(f"Failed to generate image. Status code: {response.status_code}, Error: {response.text}")
|