File size: 9,841 Bytes
08e5ef1
7edda8b
2bede7c
5fd1a0a
7edda8b
 
2bede7c
 
75b770e
08e5ef1
 
1fba392
 
925d15e
 
08e5ef1
2bede7c
925d15e
7686e09
3ad22ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c36326
d9267f6
5696fee
3ad22ce
f4651d4
9781999
d9267f6
75b770e
2124573
f4651d4
2124573
 
 
 
 
 
 
 
 
 
 
 
 
 
d9267f6
3ad22ce
 
 
f4651d4
1504cda
5696fee
9781999
b7ccecf
9781999
 
3ad22ce
 
9781999
3ad22ce
 
 
 
9781999
 
 
3ad22ce
 
9781999
 
3ad22ce
5696fee
 
9781999
b7ccecf
d9267f6
b7ccecf
 
d9267f6
 
 
 
9781999
 
5696fee
ef80b76
9781999
 
ef80b76
9781999
 
 
b7ccecf
 
9781999
3ad22ce
9781999
b7ccecf
9781999
3ad22ce
9781999
2124573
b7ccecf
3ad22ce
 
 
 
b7ccecf
9781999
 
3ad22ce
 
 
 
 
 
 
 
 
 
 
 
 
 
9781999
 
3ad22ce
 
5696fee
9781999
3ad22ce
9781999
 
5696fee
9781999
 
 
 
 
5696fee
9781999
 
2bede7c
 
ec000c3
d2fb1de
ec000c3
3ad22ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bede7c
925d15e
b31944c
925d15e
 
b31944c
925d15e
 
2bede7c
ec000c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import shutil
import subprocess
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr

from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard

from gradio_huggingfacehub_search import HuggingfaceHubSearch

from apscheduler.schedulers.background import BackgroundScheduler

from textwrap import dedent

HF_TOKEN = os.environ.get("HF_TOKEN")

def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
    if oauth_token.token is None:
        raise ValueError("You have to be logged in.")
    
    split_cmd = f"llama.cpp/gguf-split --split --split-max-tensors {split_max_tensors}"
    if split_max_size:
        split_cmd += f" --split-max-size {split_max_size}"
    split_cmd += f" {model_path} {model_path.split('.')[0]}"
    
    print(f"Split command: {split_cmd}") 
    
    result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
    print(f"Split command stdout: {result.stdout}") 
    print(f"Split command stderr: {result.stderr}") 
    
    if result.returncode != 0:
        raise Exception(f"Error splitting the model: {result.stderr}")
    print("Model split successfully!")
     
    
    sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
    if sharded_model_files:
        print(f"Sharded model files: {sharded_model_files}")
        api = HfApi(token=oauth_token.token)
        for file in sharded_model_files:
            file_path = os.path.join('.', file)
            print(f"Uploading file: {file_path}")
            try:
                api.upload_file(
                    path_or_fileobj=file_path,
                    path_in_repo=file,
                    repo_id=repo_id,
                )
            except Exception as e:
                raise Exception(f"Error uploading file {file_path}: {e}")
    else:
        raise Exception("No sharded files found.")
    
    print("Sharded model has been uploaded successfully!")

def process_model(model_id, q_method, private_repo, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
    if oauth_token.token is None:
        raise ValueError("You must be logged in to use GGUF-my-repo")
    model_name = model_id.split('/')[-1]
    fp16 = f"{model_name}.fp16.gguf"

    try:
        api = HfApi(token=oauth_token.token)

        dl_pattern = ["*.md", "*.json", "*.model"]

        pattern = (
            "*.safetensors"
            if any(
                file.path.endswith(".safetensors")
                for file in api.list_repo_tree(
                    repo_id=model_id,
                    recursive=True,
                )
            )
            else "*.bin"
        )

        dl_pattern += pattern

        api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
        print("Model downloaded successfully!")
        print(f"Current working directory: {os.getcwd()}")
        print(f"Model directory contents: {os.listdir(model_name)}")

        conversion_script = "convert-hf-to-gguf.py"
        fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
        result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
        print(result)
        if result.returncode != 0:
            raise Exception(f"Error converting to fp16: {result.stderr}")
        print("Model converted to fp16 successfully!")
        print(f"Converted model path: {fp16}")

        username = whoami(oauth_token.token)["name"]
        quantized_gguf_name = f"{model_name.lower()}-{q_method.lower()}.gguf"
        quantized_gguf_path = quantized_gguf_name
        quantise_ggml = f"./llama.cpp/quantize {fp16} {quantized_gguf_path} {q_method}"
        result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
        if result.returncode != 0:
            raise Exception(f"Error quantizing: {result.stderr}")
        print(f"Quantized successfully with {q_method} option!")
        print(f"Quantized model path: {quantized_gguf_path}")

        # Create empty repo
        new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo)
        new_repo_id = new_repo_url.repo_id
        print("Repo created successfully!", new_repo_url)

        try:
            card = ModelCard.load(model_id, token=oauth_token.token)
        except:
            card = ModelCard("")
        if card.data.tags is None:
            card.data.tags = []
        card.data.tags.append("llama-cpp")
        card.data.tags.append("gguf-my-repo")
        card.text = dedent(
            f"""
            # {new_repo_id}
            This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
            Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
            ## Use with llama.cpp
            Install llama.cpp through brew.
            ```bash
            brew install ggerganov/ggerganov/llama.cpp
            ```
            Invoke the llama.cpp server or the CLI.
            CLI:
            ```bash
            llama-cli --hf-repo {new_repo_id} --model {quantized_gguf_name} -p "The meaning to life and the universe is"
            ```
            Server:
            ```bash
            llama-server --hf-repo {new_repo_id} --model {quantized_gguf_name} -c 2048
            ```
            Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
            ```
            git clone https://github.com/ggerganov/llama.cpp && \\
            cd llama.cpp && \\
            make && \\
            ./main -m {quantized_gguf_name} -n 128
            ```
            """
        )
        card.save(f"README.md")

        if split_model:
            split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
        else:
            try:
                print(f"Uploading quantized model: {quantized_gguf_path}")
                api.upload_file(
                    path_or_fileobj=quantized_gguf_path,
                    path_in_repo=quantized_gguf_name,
                    repo_id=new_repo_id,
                )
            except Exception as e:
                raise Exception(f"Error uploading quantized model: {e}")

        api.upload_file(
            path_or_fileobj=f"README.md",
            path_in_repo=f"README.md",
            repo_id=new_repo_id,
        )
        print(f"Uploaded successfully with {q_method} option!")

        return (
            f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
            "llama.png",
        )
    except Exception as e:
        return (f"Error: {e}", "error.png")
    finally:
        shutil.rmtree(model_name, ignore_errors=True)
        print("Folder cleaned up successfully!")


# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("You must be logged in to use GGUF-my-repo.")
    gr.LoginButton(min_width=250)

    model_id_input = HuggingfaceHubSearch(
        label="Hub Model ID",
        placeholder="Search for model id on Huggingface",
        search_type="model",
    )

    q_method_input = gr.Dropdown(
        ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
        label="Quantization Method",
        info="GGML quantization type",
        value="Q4_K_M",
        filterable=False
    )

    private_repo_input = gr.Checkbox(
        value=False,
        label="Private Repo",
        info="Create a private repo under your username."
    )

    split_model_input = gr.Checkbox(
        value=False,
        label="Split Model",
        info="Shard the model using gguf-split."
    )

    split_max_tensors_input = gr.Number(
        value=256,
        label="Max Tensors per File",
        info="Maximum number of tensors per file when splitting model.",
        visible=False
    )

    split_max_size_input = gr.Textbox(
        label="Max File Size",
        info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
        visible=False
    )

    iface = gr.Interface(
        fn=process_model,
        inputs=[
            model_id_input,
            q_method_input,
            private_repo_input,
            split_model_input,
            split_max_tensors_input,
            split_max_size_input,
        ],
        outputs=[
            gr.Markdown(label="output"),
            gr.Image(show_label=False),
        ],
        title="Create your own GGUF Quants, blazingly fast ⚡!",
        description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
    )

    def update_visibility(split_model):
        return gr.update(visible=split_model), gr.update(visible=split_model)

    split_model_input.change(
        fn=update_visibility,
        inputs=split_model_input,
        outputs=[split_max_tensors_input, split_max_size_input]
    )

def restart_space():
    HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()

# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True)