gguf-my-repo3 / app.py
Vaibhav Srivastav
up.
2bede7c
raw
history blame
1.75 kB
import gradio as gr
import subprocess
from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
api = HfApi()
def process_model(model_id, q_method, username, hf_token):
MODEL_NAME = model_id.split('/')[-1]
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"
snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False)
print("Model downloaded successully!")
fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}"
subprocess.run(fp16_conversion, shell=True)
print("Model converted to fp16 successully!")
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf"
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}"
subprocess.run(quantise_ggml, shell=True)
print("Quantised successfully!")
# Create empty repo
create_repo(
repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF",
repo_type="model",
exist_ok=True,
token=hf_token
)
print("Empty repo created successfully!")
# Upload gguf files
api.upload_folder(
folder_path=MODEL_NAME,
repo_id=f"{username}/{MODEL_NAME}-{q_method}-GGUF",
allow_patterns=["*.gguf","$.md"],
token=hf_token
)
print("Uploaded successfully!")
return "Processing complete."
# Create Gradio interface
iface = gr.Interface(
fn=process_model,
inputs=[
gr.Textbox(lines=1, label="Model ID"),
gr.Textbox(lines=1, label="Quantization Methods"),
gr.Textbox(lines=1, label="Username"),
gr.Textbox(lines=1, label="Token")
],
outputs="text"
)
# Launch the interface
iface.launch(debug=True)