File size: 32,703 Bytes
1105522
 
 
 
 
 
 
 
 
 
 
 
 
ccd76a9
 
 
 
1105522
 
 
 
 
 
ccd76a9
1105522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccd76a9
1105522
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
# -*- coding: utf-8 -*-
"""PrediLectia - Gradio Final v2 with Multiple Y-Axes in Combined Plot.ipynb"""

# Instalación de librerías necesarias
#!pip install gradio seaborn scipy -q
import os
os.system('pip install gradio seaborn scipy scikit-learn openpyxl pydantic==1.10.0')

from pydantic import BaseModel, ConfigDict

class YourModel(BaseModel):
    class Config:
        arbitrary_types_allowed = True

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.integrate import odeint
from scipy.interpolate import interp1d
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
import gradio as gr
import io
from PIL import Image

# Definición de la clase BioprocessModel
class BioprocessModel:
    def __init__(self):
        self.params = {}
        self.r2 = {}
        self.rmse = {}
        self.datax = []
        self.datas = []
        self.datap = []
        self.dataxp = []
        self.datasp = []
        self.datapp = []
        self.datax_std = []
        self.datas_std = []
        self.datap_std = []

    # Funciones modelo analíticas
    @staticmethod
    def logistic(time, xo, xm, um):
        return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))

    @staticmethod
    def substrate(time, so, p, q, xo, xm, um):
        return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \
               (q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))

    @staticmethod
    def product(time, po, alpha, beta, xo, xm, um):
        return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \
               (beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))

    # Funciones modelo diferenciales
    @staticmethod
    def logistic_diff(X, t, params):
        xo, xm, um = params
        dXdt = um * X * (1 - X / xm)
        return dXdt

    def substrate_diff(self, S, t, params, biomass_params, X_func):
        so, p, q = params
        xo, xm, um = biomass_params
        X_t = X_func(t)
        dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t
        return dSdt

    def product_diff(self, P, t, params, biomass_params, X_func):
        po, alpha, beta = params
        xo, xm, um = biomass_params
        X_t = X_func(t)
        dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t
        return dPdt

    # Métodos de procesamiento y ajuste de datos
    def process_data(self, df):
        # Obtener todas las columnas que contengan "Biomasa", "Sustrato", y "Producto"
        biomass_cols = [col for col in df.columns if col[1] == 'Biomasa']
        substrate_cols = [col for col in df.columns if col[1] == 'Sustrato']
        product_cols = [col for col in df.columns if col[1] == 'Producto']

        # Procesar los datos de tiempo
        time_col = [col for col in df.columns if col[1] == 'Tiempo'][0]
        time = df[time_col].values

        # Procesar los datos de biomasa
        data_biomass = [df[col].values for col in biomass_cols]
        data_biomass = np.array(data_biomass)  # shape (num_experiments, num_time_points)
        self.datax.append(data_biomass)
        self.dataxp.append(np.mean(data_biomass, axis=0))
        self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))

        # Procesar los datos de sustrato
        data_substrate = [df[col].values for col in substrate_cols]
        data_substrate = np.array(data_substrate)
        self.datas.append(data_substrate)
        self.datasp.append(np.mean(data_substrate, axis=0))
        self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))

        # Procesar los datos de producto
        data_product = [df[col].values for col in product_cols]
        data_product = np.array(data_product)
        self.datap.append(data_product)
        self.datapp.append(np.mean(data_product, axis=0))
        self.datap_std.append(np.std(data_product, axis=0, ddof=1))

        self.time = time

    def fit_model(self, model_type='logistic'):
        if model_type == 'logistic':
            self.fit_biomass = self.fit_biomass_logistic
            self.fit_substrate = self.fit_substrate_logistic
            self.fit_product = self.fit_product_logistic
        # Puedes agregar más modelos aquí si los necesitas.

    def fit_biomass_logistic(self, time, biomass, bounds):
        popt, _ = curve_fit(self.logistic, time, biomass, bounds=bounds, maxfev=10000)
        self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]}
        y_pred = self.logistic(time, *popt)
        self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2))
        self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
        return y_pred

    def fit_substrate_logistic(self, time, substrate, biomass_params, bounds):
        popt, _ = curve_fit(lambda t, so, p, q: self.substrate(t, so, p, q, *biomass_params.values()),
                            time, substrate, bounds=bounds)
        self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
        y_pred = self.substrate(time, *popt, *biomass_params.values())
        self.r2['substrate'] = 1 - (np.sum((substrate - y_pred) ** 2) / np.sum((substrate - np.mean(substrate)) ** 2))
        self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred))
        return y_pred

    def fit_product_logistic(self, time, product, biomass_params, bounds):
        popt, _ = curve_fit(lambda t, po, alpha, beta: self.product(t, po, alpha, beta, *biomass_params.values()),
                            time, product, bounds=bounds)
        self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
        y_pred = self.product(time, *popt, *biomass_params.values())
        self.r2['product'] = 1 - (np.sum((product - y_pred) ** 2) / np.sum((product - np.mean(product)) ** 2))
        self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred))
        return y_pred

    # Métodos de visualización de resultados
    def generate_fine_time_grid(self, time):
        # Generar una malla temporal más fina para curvas suaves
        time_fine = np.linspace(time.min(), time.max(), 500)
        return time_fine

    def solve_differential_equations(self, time, initial_conditions, params):
        # Resolver la ecuación diferencial para biomasa
        xo, xm, um = params['biomass'].values()
        biomass_params = [xo, xm, um]
        time_fine = self.generate_fine_time_grid(time)

        # Resolver biomasa
        X0 = xo
        X = odeint(self.logistic_diff, X0, time_fine, args=(biomass_params,)).flatten()

        # Crear función de interpolación para X(t)
        X_func = interp1d(time_fine, X, kind='linear', fill_value="extrapolate")

        # Resolver sustrato
        so, p, q = params['substrate'].values()
        substrate_params = [so, p, q]
        S0 = so
        S = odeint(self.substrate_diff, S0, time_fine, args=(substrate_params, biomass_params, X_func)).flatten()

        # Resolver producto
        po, alpha, beta = params['product'].values()
        product_params = [po, alpha, beta]
        P0 = po
        P = odeint(self.product_diff, P0, time_fine, args=(product_params, biomass_params, X_func)).flatten()

        return X, S, P, time_fine

    def plot_results(self, time, biomass, substrate, product,
                     y_pred_biomass, y_pred_substrate, y_pred_product,
                     biomass_std=None, substrate_std=None, product_std=None,
                     experiment_name='', legend_position='best', params_position='upper right',
                     show_legend=True, show_params=True,
                     style='whitegrid',
                     line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
                     use_differential=False):
        sns.set_style(style)  # Establecer el estilo seleccionado

        if use_differential:
            y_pred_biomass, y_pred_substrate, y_pred_product, time_to_plot = self.solve_differential_equations(
                time, [biomass[0], substrate[0], product[0]], self.params)
        else:
            time_to_plot = time

        fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15))
        fig.suptitle(f'{experiment_name}', fontsize=16)

        plots = [
            (ax1, biomass, y_pred_biomass, biomass_std, 'Biomasa', 'Modelo', self.params['biomass'],
             self.r2['biomass'], self.rmse['biomass']),
            (ax2, substrate, y_pred_substrate, substrate_std, 'Sustrato', 'Modelo', self.params['substrate'],
             self.r2['substrate'], self.rmse['substrate']),
            (ax3, product, y_pred_product, product_std, 'Producto', 'Modelo', self.params['product'],
             self.r2['product'], self.rmse['product'])
        ]

        for idx, (ax, data, y_pred, data_std, ylabel, model_name, params, r2, rmse) in enumerate(plots):
            if data_std is not None:
                ax.errorbar(time, data, yerr=data_std, fmt=marker_style, color=point_color,
                            label='Datos experimentales', capsize=5)
            else:
                ax.plot(time, data, marker=marker_style, linestyle='', color=point_color,
                        label='Datos experimentales')
            if use_differential:
                ax.plot(time_to_plot, y_pred, linestyle=line_style, color=line_color, label=model_name)
            else:
                ax.plot(time, y_pred, linestyle=line_style, color=line_color, label=model_name)
            ax.set_xlabel('Tiempo')
            ax.set_ylabel(ylabel)
            if show_legend:
                ax.legend(loc=legend_position)
            ax.set_title(f'{ylabel}')

            if show_params:
                param_text = '\n'.join([f"{k} = {v:.4f}" for k, v in params.items()])
                text = f"{param_text}\nR² = {r2:.4f}\nRMSE = {rmse:.4f}"

                # Si la posición es 'outside right', ajustar la posición del texto
                if params_position == 'outside right':
                    bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5)
                    ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction',
                                verticalalignment='center', bbox=bbox_props)
                else:
                    if params_position in ['upper right', 'lower right']:
                        text_x = 0.95
                        ha = 'right'
                    else:
                        text_x = 0.05
                        ha = 'left'

                    if params_position in ['upper right', 'upper left']:
                        text_y = 0.95
                        va = 'top'
                    else:
                        text_y = 0.05
                        va = 'bottom'

                    ax.text(text_x, text_y, text, transform=ax.transAxes,
                            verticalalignment=va, horizontalalignment=ha,
                            bbox={'boxstyle': 'round', 'facecolor': 'white', 'alpha': 0.5})

        plt.tight_layout()
        return fig

    def plot_combined_results(self, time, biomass, substrate, product,
                              y_pred_biomass, y_pred_substrate, y_pred_product,
                              biomass_std=None, substrate_std=None, product_std=None,
                              experiment_name='', legend_position='best', params_position='upper right',
                              show_legend=True, show_params=True,
                              style='whitegrid',
                              line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
                              use_differential=False):
        sns.set_style(style)  # Establecer el estilo seleccionado

        if use_differential:
            y_pred_biomass, y_pred_substrate, y_pred_product, time_to_plot = self.solve_differential_equations(
                time, [biomass[0], substrate[0], product[0]], self.params)
        else:
            time_to_plot = time

        fig, ax1 = plt.subplots(figsize=(10, 7))
        fig.suptitle(f'{experiment_name}', fontsize=16)

        # Colores específicos para cada variable
        colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'}

        # Plot Biomasa en ax1
        ax1.set_xlabel('Tiempo')
        ax1.set_ylabel('Biomasa', color=colors['Biomasa'])
        if biomass_std is not None:
            ax1.errorbar(time, biomass, yerr=biomass_std, fmt=marker_style, color=colors['Biomasa'],
                         label='Biomasa (Datos)', capsize=5)
        else:
            ax1.plot(time, biomass, marker=marker_style, linestyle='', color=colors['Biomasa'],
                     label='Biomasa (Datos)')
        if use_differential:
            ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=colors['Biomasa'],
                     label='Biomasa (Modelo)')
        else:
            ax1.plot(time, y_pred_biomass, linestyle=line_style, color=colors['Biomasa'],
                     label='Biomasa (Modelo)')
        ax1.tick_params(axis='y', labelcolor=colors['Biomasa'])

        # Crear segundo eje y para Sustrato
        ax2 = ax1.twinx()
        ax2.set_ylabel('Sustrato', color=colors['Sustrato'])
        if substrate_std is not None:
            ax2.errorbar(time, substrate, yerr=substrate_std, fmt=marker_style, color=colors['Sustrato'],
                         label='Sustrato (Datos)', capsize=5)
        else:
            ax2.plot(time, substrate, marker=marker_style, linestyle='', color=colors['Sustrato'],
                     label='Sustrato (Datos)')
        if use_differential:
            ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'],
                     label='Sustrato (Modelo)')
        else:
            ax2.plot(time, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'],
                     label='Sustrato (Modelo)')
        ax2.tick_params(axis='y', labelcolor=colors['Sustrato'])

        # Crear tercer eje y para Producto
        ax3 = ax1.twinx()
        # Desplazar el tercer eje para evitar superposición
        ax3.spines["right"].set_position(("axes", 1.1))
        ax3.set_frame_on(True)
        ax3.patch.set_visible(False)
        for sp in ax3.spines.values():
            sp.set_visible(True)

        ax3.set_ylabel('Producto', color=colors['Producto'])
        if product_std is not None:
            ax3.errorbar(time, product, yerr=product_std, fmt=marker_style, color=colors['Producto'],
                         label='Producto (Datos)', capsize=5)
        else:
            ax3.plot(time, product, marker=marker_style, linestyle='', color=colors['Producto'],
                     label='Producto (Datos)')
        if use_differential:
            ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=colors['Producto'],
                     label='Producto (Modelo)')
        else:
            ax3.plot(time, y_pred_product, linestyle=line_style, color=colors['Producto'],
                     label='Producto (Modelo)')
        ax3.tick_params(axis='y', labelcolor=colors['Producto'])

        # Manejo de leyendas
        lines_labels = [ax.get_legend_handles_labels() for ax in [ax1, ax2, ax3]]
        lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
        if show_legend:
            ax1.legend(lines, labels, loc=legend_position)

        # Mostrar parámetros y estadísticas en el gráfico
        if show_params:
            param_text_biomass = '\n'.join([f"{k} = {v:.4f}" for k, v in self.params['biomass'].items()])
            text_biomass = f"Biomasa:\n{param_text_biomass}\nR² = {self.r2['biomass']:.4f}\nRMSE = {self.rmse['biomass']:.4f}"

            param_text_substrate = '\n'.join([f"{k} = {v:.4f}" for k, v in self.params['substrate'].items()])
            text_substrate = f"Sustrato:\n{param_text_substrate}\nR² = {self.r2['substrate']:.4f}\nRMSE = {self.rmse['substrate']:.4f}"

            param_text_product = '\n'.join([f"{k} = {v:.4f}" for k, v in self.params['product'].items()])
            text_product = f"Producto:\n{param_text_product}\nR² = {self.r2['product']:.4f}\nRMSE = {self.rmse['product']:.4f}"

            total_text = f"{text_biomass}\n\n{text_substrate}\n\n{text_product}"

            if params_position == 'outside right':
                bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5)
                ax3.annotate(total_text, xy=(1.2, 0.5), xycoords='axes fraction',
                             verticalalignment='center', bbox=bbox_props)
            else:
                if params_position in ['upper right', 'lower right']:
                    text_x = 0.95
                    ha = 'right'
                else:
                    text_x = 0.05
                    ha = 'left'

                if params_position in ['upper right', 'upper left']:
                    text_y = 0.95
                    va = 'top'
                else:
                    text_y = 0.05
                    va = 'bottom'

                ax1.text(text_x, text_y, total_text, transform=ax1.transAxes,
                         verticalalignment=va, horizontalalignment=ha,
                         bbox={'boxstyle': 'round', 'facecolor': 'white', 'alpha': 0.5})

        plt.tight_layout()
        return fig

# Función de procesamiento de datos
def process_data(file, legend_position, params_position, model_type, experiment_names, lower_bounds, upper_bounds,
                 mode='independent', style='whitegrid', line_color='#0000FF', point_color='#000000',
                 line_style='-', marker_style='o', show_legend=True, show_params=True, use_differential=False):
    # Leer todas las hojas del archivo Excel
    xls = pd.ExcelFile(file.name)
    sheet_names = xls.sheet_names

    model = BioprocessModel()
    model.fit_model(model_type)
    figures = []

    # Si no se proporcionan suficientes límites, usar valores predeterminados
    default_lower_bounds = (0, 0, 0)
    default_upper_bounds = (np.inf, np.inf, np.inf)

    experiment_counter = 0  # Contador global de experimentos

    for sheet_name in sheet_names:
        df = pd.read_excel(file.name, sheet_name=sheet_name, header=[0, 1])

        # Procesar datos
        model.process_data(df)
        time = model.time

        if mode == 'independent':
            # Modo independiente: iterar sobre cada experimento
            num_experiments = len(df.columns.levels[0])
            for idx in range(num_experiments):
                col = df.columns.levels[0][idx]
                time = df[(col, 'Tiempo')].dropna().values
                biomass = df[(col, 'Biomasa')].dropna().values
                substrate = df[(col, 'Sustrato')].dropna().values
                product = df[(col, 'Producto')].dropna().values

                # Si hay replicados en el experimento, calcular la desviación estándar
                biomass_std = None
                substrate_std = None
                product_std = None
                if biomass.ndim > 1:
                    biomass_std = np.std(biomass, axis=0, ddof=1)
                    biomass = np.mean(biomass, axis=0)
                if substrate.ndim > 1:
                    substrate_std = np.std(substrate, axis=0, ddof=1)
                    substrate = np.mean(substrate, axis=0)
                if product.ndim > 1:
                    product_std = np.std(product, axis=0, ddof=1)
                    product = np.mean(product, axis=0)

                # Obtener límites o usar valores predeterminados
                lower_bound = lower_bounds[experiment_counter] if experiment_counter < len(lower_bounds) else default_lower_bounds
                upper_bound = upper_bounds[experiment_counter] if experiment_counter < len(upper_bounds) else default_upper_bounds
                bounds = (lower_bound, upper_bound)

                # Ajustar el modelo
                y_pred_biomass = model.fit_biomass(time, biomass, bounds)
                y_pred_substrate = model.fit_substrate(time, substrate, model.params['biomass'], bounds)
                y_pred_product = model.fit_product(time, product, model.params['biomass'], bounds)

                # Usar el nombre del experimento proporcionado o un nombre por defecto
                experiment_name = experiment_names[experiment_counter] if experiment_counter < len(experiment_names) else f"Tratamiento {experiment_counter + 1}"

                if mode == 'combinado':
                    fig = model.plot_combined_results(time, biomass, substrate, product,
                                                      y_pred_biomass, y_pred_substrate, y_pred_product,
                                                      biomass_std, substrate_std, product_std,
                                                      experiment_name, legend_position, params_position,
                                                      show_legend, show_params,
                                                      style,
                                                      line_color, point_color, line_style, marker_style,
                                                      use_differential)
                else:
                    fig = model.plot_results(time, biomass, substrate, product,
                                             y_pred_biomass, y_pred_substrate, y_pred_product,
                                             biomass_std, substrate_std, product_std,
                                             experiment_name, legend_position, params_position,
                                             show_legend, show_params,
                                             style,
                                             line_color, point_color, line_style, marker_style,
                                             use_differential)
                figures.append(fig)

                experiment_counter += 1

        elif mode == 'average':
            # Modo promedio: usar dataxp, datasp y datapp
            time = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values
            biomass = model.dataxp[-1]
            substrate = model.datasp[-1]
            product = model.datapp[-1]

            # Obtener las desviaciones estándar
            biomass_std = model.datax_std[-1]
            substrate_std = model.datas_std[-1]
            product_std = model.datap_std[-1]

            # Obtener límites o usar valores predeterminados
            lower_bound = lower_bounds[experiment_counter] if experiment_counter < len(lower_bounds) else default_lower_bounds
            upper_bound = upper_bounds[experiment_counter] if experiment_counter < len(upper_bounds) else default_upper_bounds
            bounds = (lower_bound, upper_bound)

            # Ajustar el modelo
            y_pred_biomass = model.fit_biomass(time, biomass, bounds)
            y_pred_substrate = model.fit_substrate(time, substrate, model.params['biomass'], bounds)
            y_pred_product = model.fit_product(time, product, model.params['biomass'], bounds)

            # Usar el nombre del experimento proporcionado o un nombre por defecto
            experiment_name = experiment_names[experiment_counter] if experiment_counter < len(experiment_names) else f"Tratamiento {experiment_counter + 1}"

            if mode == 'combinado':
                fig = model.plot_combined_results(time, biomass, substrate, product,
                                                  y_pred_biomass, y_pred_substrate, y_pred_product,
                                                  biomass_std, substrate_std, product_std,
                                                  experiment_name, legend_position, params_position,
                                                  show_legend, show_params,
                                                  style,
                                                  line_color, point_color, line_style, marker_style,
                                                  use_differential)
            else:
                fig = model.plot_results(time, biomass, substrate, product,
                                         y_pred_biomass, y_pred_substrate, y_pred_product,
                                         biomass_std, substrate_std, product_std,
                                         experiment_name, legend_position, params_position,
                                         show_legend, show_params,
                                         style,
                                         line_color, point_color, line_style, marker_style,
                                         use_differential)
            figures.append(fig)

            experiment_counter += 1

        elif mode == 'combinado':
            # Modo combinado: combinar las gráficas en una sola
            time = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values
            biomass = model.dataxp[-1]
            substrate = model.datasp[-1]
            product = model.datapp[-1]

            # Obtener las desviaciones estándar
            biomass_std = model.datax_std[-1]
            substrate_std = model.datas_std[-1]
            product_std = model.datap_std[-1]

            # Obtener límites o usar valores predeterminados
            lower_bound = lower_bounds[experiment_counter] if experiment_counter < len(lower_bounds) else default_lower_bounds
            upper_bound = upper_bounds[experiment_counter] if experiment_counter < len(upper_bounds) else default_upper_bounds
            bounds = (lower_bound, upper_bound)

            # Ajustar el modelo
            y_pred_biomass = model.fit_biomass(time, biomass, bounds)
            y_pred_substrate = model.fit_substrate(time, substrate, model.params['biomass'], bounds)
            y_pred_product = model.fit_product(time, product, model.params['biomass'], bounds)

            # Usar el nombre del experimento proporcionado o un nombre por defecto
            experiment_name = experiment_names[experiment_counter] if experiment_counter < len(experiment_names) else f"Tratamiento {experiment_counter + 1}"

            fig = model.plot_combined_results(time, biomass, substrate, product,
                                              y_pred_biomass, y_pred_substrate, y_pred_product,
                                              biomass_std, substrate_std, product_std,
                                              experiment_name, legend_position, params_position,
                                              show_legend, show_params,
                                              style,
                                              line_color, point_color, line_style, marker_style,
                                              use_differential)
            figures.append(fig)

            experiment_counter += 1

    return figures

def create_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Modelos de Bioproceso: Logístico y Luedeking-Piret")
        gr.Markdown(
            "Sube un archivo Excel con múltiples pestañas. Cada pestaña debe contener columnas 'Tiempo', 'Biomasa', 'Sustrato' y 'Producto' para cada experimento.")

        file_input = gr.File(label="Subir archivo Excel")

        with gr.Row():
            with gr.Column():
                legend_position = gr.Radio(
                    choices=["upper left", "upper right", "lower left", "lower right", "best"],
                    label="Posición de la leyenda",
                    value="best"
                )
                show_legend = gr.Checkbox(label="Mostrar Leyenda", value=True)

            with gr.Column():
                params_positions = ["upper left", "upper right", "lower left", "lower right", "outside right"]
                params_position = gr.Radio(
                    choices=params_positions,
                    label="Posición de los parámetros",
                    value="upper right"
                )
                show_params = gr.Checkbox(label="Mostrar Parámetros", value=True)

        model_type = gr.Radio(["logistic"], label="Tipo de Modelo", value="logistic")
        mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent")

        use_differential = gr.Checkbox(label="Usar ecuaciones diferenciales para graficar", value=False)

        experiment_names = gr.Textbox(
            label="Nombres de los experimentos (uno por línea)",
            placeholder="Experimento 1\nExperimento 2\n...",
            lines=5
        )

        with gr.Row():
            with gr.Column():
                lower_bounds = gr.Textbox(
                    label="Lower Bounds (uno por línea, formato: xo,xm,um)",
                    placeholder="0,0,0\n0,0,0\n...",
                    lines=5
                )

            with gr.Column():
                upper_bounds = gr.Textbox(
                    label="Upper Bounds (uno por línea, formato: xo,xm,um)",
                    placeholder="inf,inf,inf\ninf,inf,inf\n...",
                    lines=5
                )

        # Añadir un desplegable para seleccionar el estilo del gráfico
        styles = ['white', 'dark', 'whitegrid', 'darkgrid', 'ticks']
        style_dropdown = gr.Dropdown(choices=styles, label="Selecciona el estilo de gráfico", value='whitegrid')

        # Añadir color pickers para líneas y puntos
        line_color_picker = gr.ColorPicker(label="Color de la línea", value='#0000FF')
        point_color_picker = gr.ColorPicker(label="Color de los puntos", value='#000000')

        # Añadir listas desplegables para tipo de línea y tipo de punto
        line_style_options = ['-', '--', '-.', ':']
        line_style_dropdown = gr.Dropdown(choices=line_style_options, label="Estilo de línea", value='-')

        marker_style_options = ['o', 's', '^', 'v', 'D', 'x', '+', '*']
        marker_style_dropdown = gr.Dropdown(choices=marker_style_options, label="Estilo de punto", value='o')

        simulate_btn = gr.Button("Simular")

        # Definir un componente gr.Gallery para las salidas
        output_gallery = gr.Gallery(label="Resultados", columns=2, height='auto')

        def process_and_plot(file, legend_position, params_position, model_type, mode, experiment_names,
                             lower_bounds, upper_bounds, style,
                             line_color, point_color, line_style, marker_style,
                             show_legend, show_params, use_differential):
            # Dividir los nombres de experimentos y límites en listas
            experiment_names_list = experiment_names.strip().split('\n') if experiment_names.strip() else []
            lower_bounds_list = [tuple(map(float, lb.split(','))) for lb in
                                 lower_bounds.strip().split('\n')] if lower_bounds.strip() else []
            upper_bounds_list = [tuple(map(float, ub.split(','))) for ub in
                                 upper_bounds.strip().split('\n')] if upper_bounds.strip() else []

            # Procesar los datos y generar gráficos
            figures = process_data(file, legend_position, params_position, model_type, experiment_names_list,
                                   lower_bounds_list, upper_bounds_list, mode, style,
                                   line_color, point_color, line_style, marker_style,
                                   show_legend, show_params, use_differential)

            # Convertir las figuras a imágenes y devolverlas como lista
            image_list = []
            for fig in figures:
                buf = io.BytesIO()
                fig.savefig(buf, format='png')
                buf.seek(0)
                image = Image.open(buf)
                image_list.append(image)

            return image_list

        simulate_btn.click(
            fn=process_and_plot,
            inputs=[file_input,
                    legend_position,
                    params_position,
                    model_type,
                    mode,
                    experiment_names,
                    lower_bounds,
                    upper_bounds,
                    style_dropdown,
                    line_color_picker,
                    point_color_picker,
                    line_style_dropdown,
                    marker_style_dropdown,
                    show_legend,
                    show_params,
                    use_differential],
            outputs=output_gallery
        )

    return demo

# Crear y lanzar la interfaz
demo = create_interface()
demo.launch(share=True)