Biotech / app.py
C2MV's picture
Update app.py
35c25ca verified
raw
history blame
32.7 kB
# -*- coding: utf-8 -*-
"""PrediLectia - Gradio Final v2 with Multiple Y-Axes in Combined Plot.ipynb"""
# Instalación de librerías necesarias
#!pip install gradio seaborn scipy -q
import os
os.system('pip install gradio seaborn scipy scikit-learn openpyxl pydantic==1.10.0')
from pydantic import BaseModel, ConfigDict
class YourModel(BaseModel):
class Config:
arbitrary_types_allowed = True
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.integrate import odeint
from scipy.interpolate import interp1d
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
import gradio as gr
import io
from PIL import Image
# Definición de la clase BioprocessModel
class BioprocessModel:
def __init__(self):
self.params = {}
self.r2 = {}
self.rmse = {}
self.datax = []
self.datas = []
self.datap = []
self.dataxp = []
self.datasp = []
self.datapp = []
self.datax_std = []
self.datas_std = []
self.datap_std = []
# Funciones modelo analíticas
@staticmethod
def logistic(time, xo, xm, um):
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))
@staticmethod
def substrate(time, so, p, q, xo, xm, um):
return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \
(q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
@staticmethod
def product(time, po, alpha, beta, xo, xm, um):
return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \
(beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
# Funciones modelo diferenciales
@staticmethod
def logistic_diff(X, t, params):
xo, xm, um = params
dXdt = um * X * (1 - X / xm)
return dXdt
def substrate_diff(self, S, t, params, biomass_params, X_func):
so, p, q = params
xo, xm, um = biomass_params
X_t = X_func(t)
dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t
return dSdt
def product_diff(self, P, t, params, biomass_params, X_func):
po, alpha, beta = params
xo, xm, um = biomass_params
X_t = X_func(t)
dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t
return dPdt
# Métodos de procesamiento y ajuste de datos
def process_data(self, df):
# Obtener todas las columnas que contengan "Biomasa", "Sustrato", y "Producto"
biomass_cols = [col for col in df.columns if col[1] == 'Biomasa']
substrate_cols = [col for col in df.columns if col[1] == 'Sustrato']
product_cols = [col for col in df.columns if col[1] == 'Producto']
# Procesar los datos de tiempo
time_col = [col for col in df.columns if col[1] == 'Tiempo'][0]
time = df[time_col].values
# Procesar los datos de biomasa
data_biomass = [df[col].values for col in biomass_cols]
data_biomass = np.array(data_biomass) # shape (num_experiments, num_time_points)
self.datax.append(data_biomass)
self.dataxp.append(np.mean(data_biomass, axis=0))
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
# Procesar los datos de sustrato
data_substrate = [df[col].values for col in substrate_cols]
data_substrate = np.array(data_substrate)
self.datas.append(data_substrate)
self.datasp.append(np.mean(data_substrate, axis=0))
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
# Procesar los datos de producto
data_product = [df[col].values for col in product_cols]
data_product = np.array(data_product)
self.datap.append(data_product)
self.datapp.append(np.mean(data_product, axis=0))
self.datap_std.append(np.std(data_product, axis=0, ddof=1))
self.time = time
def fit_model(self, model_type='logistic'):
if model_type == 'logistic':
self.fit_biomass = self.fit_biomass_logistic
self.fit_substrate = self.fit_substrate_logistic
self.fit_product = self.fit_product_logistic
# Puedes agregar más modelos aquí si los necesitas.
def fit_biomass_logistic(self, time, biomass, bounds):
popt, _ = curve_fit(self.logistic, time, biomass, bounds=bounds, maxfev=10000)
self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]}
y_pred = self.logistic(time, *popt)
self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2))
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
return y_pred
def fit_substrate_logistic(self, time, substrate, biomass_params, bounds):
popt, _ = curve_fit(lambda t, so, p, q: self.substrate(t, so, p, q, *biomass_params.values()),
time, substrate, bounds=bounds)
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
y_pred = self.substrate(time, *popt, *biomass_params.values())
self.r2['substrate'] = 1 - (np.sum((substrate - y_pred) ** 2) / np.sum((substrate - np.mean(substrate)) ** 2))
self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred))
return y_pred
def fit_product_logistic(self, time, product, biomass_params, bounds):
popt, _ = curve_fit(lambda t, po, alpha, beta: self.product(t, po, alpha, beta, *biomass_params.values()),
time, product, bounds=bounds)
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
y_pred = self.product(time, *popt, *biomass_params.values())
self.r2['product'] = 1 - (np.sum((product - y_pred) ** 2) / np.sum((product - np.mean(product)) ** 2))
self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred))
return y_pred
# Métodos de visualización de resultados
def generate_fine_time_grid(self, time):
# Generar una malla temporal más fina para curvas suaves
time_fine = np.linspace(time.min(), time.max(), 500)
return time_fine
def solve_differential_equations(self, time, initial_conditions, params):
# Resolver la ecuación diferencial para biomasa
xo, xm, um = params['biomass'].values()
biomass_params = [xo, xm, um]
time_fine = self.generate_fine_time_grid(time)
# Resolver biomasa
X0 = xo
X = odeint(self.logistic_diff, X0, time_fine, args=(biomass_params,)).flatten()
# Crear función de interpolación para X(t)
X_func = interp1d(time_fine, X, kind='linear', fill_value="extrapolate")
# Resolver sustrato
so, p, q = params['substrate'].values()
substrate_params = [so, p, q]
S0 = so
S = odeint(self.substrate_diff, S0, time_fine, args=(substrate_params, biomass_params, X_func)).flatten()
# Resolver producto
po, alpha, beta = params['product'].values()
product_params = [po, alpha, beta]
P0 = po
P = odeint(self.product_diff, P0, time_fine, args=(product_params, biomass_params, X_func)).flatten()
return X, S, P, time_fine
def plot_results(self, time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std=None, substrate_std=None, product_std=None,
experiment_name='', legend_position='best', params_position='upper right',
show_legend=True, show_params=True,
style='whitegrid',
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
use_differential=False):
sns.set_style(style) # Establecer el estilo seleccionado
if use_differential:
y_pred_biomass, y_pred_substrate, y_pred_product, time_to_plot = self.solve_differential_equations(
time, [biomass[0], substrate[0], product[0]], self.params)
else:
time_to_plot = time
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15))
fig.suptitle(f'{experiment_name}', fontsize=16)
plots = [
(ax1, biomass, y_pred_biomass, biomass_std, 'Biomasa', 'Modelo', self.params['biomass'],
self.r2['biomass'], self.rmse['biomass']),
(ax2, substrate, y_pred_substrate, substrate_std, 'Sustrato', 'Modelo', self.params['substrate'],
self.r2['substrate'], self.rmse['substrate']),
(ax3, product, y_pred_product, product_std, 'Producto', 'Modelo', self.params['product'],
self.r2['product'], self.rmse['product'])
]
for idx, (ax, data, y_pred, data_std, ylabel, model_name, params, r2, rmse) in enumerate(plots):
if data_std is not None:
ax.errorbar(time, data, yerr=data_std, fmt=marker_style, color=point_color,
label='Datos experimentales', capsize=5)
else:
ax.plot(time, data, marker=marker_style, linestyle='', color=point_color,
label='Datos experimentales')
if use_differential:
ax.plot(time_to_plot, y_pred, linestyle=line_style, color=line_color, label=model_name)
else:
ax.plot(time, y_pred, linestyle=line_style, color=line_color, label=model_name)
ax.set_xlabel('Tiempo')
ax.set_ylabel(ylabel)
if show_legend:
ax.legend(loc=legend_position)
ax.set_title(f'{ylabel}')
if show_params:
param_text = '\n'.join([f"{k} = {v:.4f}" for k, v in params.items()])
text = f"{param_text}\nR² = {r2:.4f}\nRMSE = {rmse:.4f}"
# Si la posición es 'outside right', ajustar la posición del texto
if params_position == 'outside right':
bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5)
ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction',
verticalalignment='center', bbox=bbox_props)
else:
if params_position in ['upper right', 'lower right']:
text_x = 0.95
ha = 'right'
else:
text_x = 0.05
ha = 'left'
if params_position in ['upper right', 'upper left']:
text_y = 0.95
va = 'top'
else:
text_y = 0.05
va = 'bottom'
ax.text(text_x, text_y, text, transform=ax.transAxes,
verticalalignment=va, horizontalalignment=ha,
bbox={'boxstyle': 'round', 'facecolor': 'white', 'alpha': 0.5})
plt.tight_layout()
return fig
def plot_combined_results(self, time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std=None, substrate_std=None, product_std=None,
experiment_name='', legend_position='best', params_position='upper right',
show_legend=True, show_params=True,
style='whitegrid',
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
use_differential=False):
sns.set_style(style) # Establecer el estilo seleccionado
if use_differential:
y_pred_biomass, y_pred_substrate, y_pred_product, time_to_plot = self.solve_differential_equations(
time, [biomass[0], substrate[0], product[0]], self.params)
else:
time_to_plot = time
fig, ax1 = plt.subplots(figsize=(10, 7))
fig.suptitle(f'{experiment_name}', fontsize=16)
# Colores específicos para cada variable
colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'}
# Plot Biomasa en ax1
ax1.set_xlabel('Tiempo')
ax1.set_ylabel('Biomasa', color=colors['Biomasa'])
if biomass_std is not None:
ax1.errorbar(time, biomass, yerr=biomass_std, fmt=marker_style, color=colors['Biomasa'],
label='Biomasa (Datos)', capsize=5)
else:
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=colors['Biomasa'],
label='Biomasa (Datos)')
if use_differential:
ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=colors['Biomasa'],
label='Biomasa (Modelo)')
else:
ax1.plot(time, y_pred_biomass, linestyle=line_style, color=colors['Biomasa'],
label='Biomasa (Modelo)')
ax1.tick_params(axis='y', labelcolor=colors['Biomasa'])
# Crear segundo eje y para Sustrato
ax2 = ax1.twinx()
ax2.set_ylabel('Sustrato', color=colors['Sustrato'])
if substrate_std is not None:
ax2.errorbar(time, substrate, yerr=substrate_std, fmt=marker_style, color=colors['Sustrato'],
label='Sustrato (Datos)', capsize=5)
else:
ax2.plot(time, substrate, marker=marker_style, linestyle='', color=colors['Sustrato'],
label='Sustrato (Datos)')
if use_differential:
ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'],
label='Sustrato (Modelo)')
else:
ax2.plot(time, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'],
label='Sustrato (Modelo)')
ax2.tick_params(axis='y', labelcolor=colors['Sustrato'])
# Crear tercer eje y para Producto
ax3 = ax1.twinx()
# Desplazar el tercer eje para evitar superposición
ax3.spines["right"].set_position(("axes", 1.1))
ax3.set_frame_on(True)
ax3.patch.set_visible(False)
for sp in ax3.spines.values():
sp.set_visible(True)
ax3.set_ylabel('Producto', color=colors['Producto'])
if product_std is not None:
ax3.errorbar(time, product, yerr=product_std, fmt=marker_style, color=colors['Producto'],
label='Producto (Datos)', capsize=5)
else:
ax3.plot(time, product, marker=marker_style, linestyle='', color=colors['Producto'],
label='Producto (Datos)')
if use_differential:
ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=colors['Producto'],
label='Producto (Modelo)')
else:
ax3.plot(time, y_pred_product, linestyle=line_style, color=colors['Producto'],
label='Producto (Modelo)')
ax3.tick_params(axis='y', labelcolor=colors['Producto'])
# Manejo de leyendas
lines_labels = [ax.get_legend_handles_labels() for ax in [ax1, ax2, ax3]]
lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
if show_legend:
ax1.legend(lines, labels, loc=legend_position)
# Mostrar parámetros y estadísticas en el gráfico
if show_params:
param_text_biomass = '\n'.join([f"{k} = {v:.4f}" for k, v in self.params['biomass'].items()])
text_biomass = f"Biomasa:\n{param_text_biomass}\nR² = {self.r2['biomass']:.4f}\nRMSE = {self.rmse['biomass']:.4f}"
param_text_substrate = '\n'.join([f"{k} = {v:.4f}" for k, v in self.params['substrate'].items()])
text_substrate = f"Sustrato:\n{param_text_substrate}\nR² = {self.r2['substrate']:.4f}\nRMSE = {self.rmse['substrate']:.4f}"
param_text_product = '\n'.join([f"{k} = {v:.4f}" for k, v in self.params['product'].items()])
text_product = f"Producto:\n{param_text_product}\nR² = {self.r2['product']:.4f}\nRMSE = {self.rmse['product']:.4f}"
total_text = f"{text_biomass}\n\n{text_substrate}\n\n{text_product}"
if params_position == 'outside right':
bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5)
ax3.annotate(total_text, xy=(1.2, 0.5), xycoords='axes fraction',
verticalalignment='center', bbox=bbox_props)
else:
if params_position in ['upper right', 'lower right']:
text_x = 0.95
ha = 'right'
else:
text_x = 0.05
ha = 'left'
if params_position in ['upper right', 'upper left']:
text_y = 0.95
va = 'top'
else:
text_y = 0.05
va = 'bottom'
ax1.text(text_x, text_y, total_text, transform=ax1.transAxes,
verticalalignment=va, horizontalalignment=ha,
bbox={'boxstyle': 'round', 'facecolor': 'white', 'alpha': 0.5})
plt.tight_layout()
return fig
# Función de procesamiento de datos
def process_data(file, legend_position, params_position, model_type, experiment_names, lower_bounds, upper_bounds,
mode='independent', style='whitegrid', line_color='#0000FF', point_color='#000000',
line_style='-', marker_style='o', show_legend=True, show_params=True, use_differential=False):
# Leer todas las hojas del archivo Excel
xls = pd.ExcelFile(file.name)
sheet_names = xls.sheet_names
model = BioprocessModel()
model.fit_model(model_type)
figures = []
# Si no se proporcionan suficientes límites, usar valores predeterminados
default_lower_bounds = (0, 0, 0)
default_upper_bounds = (np.inf, np.inf, np.inf)
experiment_counter = 0 # Contador global de experimentos
for sheet_name in sheet_names:
df = pd.read_excel(file.name, sheet_name=sheet_name, header=[0, 1])
# Procesar datos
model.process_data(df)
time = model.time
if mode == 'independent':
# Modo independiente: iterar sobre cada experimento
num_experiments = len(df.columns.levels[0])
for idx in range(num_experiments):
col = df.columns.levels[0][idx]
time = df[(col, 'Tiempo')].dropna().values
biomass = df[(col, 'Biomasa')].dropna().values
substrate = df[(col, 'Sustrato')].dropna().values
product = df[(col, 'Producto')].dropna().values
# Si hay replicados en el experimento, calcular la desviación estándar
biomass_std = None
substrate_std = None
product_std = None
if biomass.ndim > 1:
biomass_std = np.std(biomass, axis=0, ddof=1)
biomass = np.mean(biomass, axis=0)
if substrate.ndim > 1:
substrate_std = np.std(substrate, axis=0, ddof=1)
substrate = np.mean(substrate, axis=0)
if product.ndim > 1:
product_std = np.std(product, axis=0, ddof=1)
product = np.mean(product, axis=0)
# Obtener límites o usar valores predeterminados
lower_bound = lower_bounds[experiment_counter] if experiment_counter < len(lower_bounds) else default_lower_bounds
upper_bound = upper_bounds[experiment_counter] if experiment_counter < len(upper_bounds) else default_upper_bounds
bounds = (lower_bound, upper_bound)
# Ajustar el modelo
y_pred_biomass = model.fit_biomass(time, biomass, bounds)
y_pred_substrate = model.fit_substrate(time, substrate, model.params['biomass'], bounds)
y_pred_product = model.fit_product(time, product, model.params['biomass'], bounds)
# Usar el nombre del experimento proporcionado o un nombre por defecto
experiment_name = experiment_names[experiment_counter] if experiment_counter < len(experiment_names) else f"Tratamiento {experiment_counter + 1}"
if mode == 'combinado':
fig = model.plot_combined_results(time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std, substrate_std, product_std,
experiment_name, legend_position, params_position,
show_legend, show_params,
style,
line_color, point_color, line_style, marker_style,
use_differential)
else:
fig = model.plot_results(time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std, substrate_std, product_std,
experiment_name, legend_position, params_position,
show_legend, show_params,
style,
line_color, point_color, line_style, marker_style,
use_differential)
figures.append(fig)
experiment_counter += 1
elif mode == 'average':
# Modo promedio: usar dataxp, datasp y datapp
time = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values
biomass = model.dataxp[-1]
substrate = model.datasp[-1]
product = model.datapp[-1]
# Obtener las desviaciones estándar
biomass_std = model.datax_std[-1]
substrate_std = model.datas_std[-1]
product_std = model.datap_std[-1]
# Obtener límites o usar valores predeterminados
lower_bound = lower_bounds[experiment_counter] if experiment_counter < len(lower_bounds) else default_lower_bounds
upper_bound = upper_bounds[experiment_counter] if experiment_counter < len(upper_bounds) else default_upper_bounds
bounds = (lower_bound, upper_bound)
# Ajustar el modelo
y_pred_biomass = model.fit_biomass(time, biomass, bounds)
y_pred_substrate = model.fit_substrate(time, substrate, model.params['biomass'], bounds)
y_pred_product = model.fit_product(time, product, model.params['biomass'], bounds)
# Usar el nombre del experimento proporcionado o un nombre por defecto
experiment_name = experiment_names[experiment_counter] if experiment_counter < len(experiment_names) else f"Tratamiento {experiment_counter + 1}"
if mode == 'combinado':
fig = model.plot_combined_results(time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std, substrate_std, product_std,
experiment_name, legend_position, params_position,
show_legend, show_params,
style,
line_color, point_color, line_style, marker_style,
use_differential)
else:
fig = model.plot_results(time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std, substrate_std, product_std,
experiment_name, legend_position, params_position,
show_legend, show_params,
style,
line_color, point_color, line_style, marker_style,
use_differential)
figures.append(fig)
experiment_counter += 1
elif mode == 'combinado':
# Modo combinado: combinar las gráficas en una sola
time = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values
biomass = model.dataxp[-1]
substrate = model.datasp[-1]
product = model.datapp[-1]
# Obtener las desviaciones estándar
biomass_std = model.datax_std[-1]
substrate_std = model.datas_std[-1]
product_std = model.datap_std[-1]
# Obtener límites o usar valores predeterminados
lower_bound = lower_bounds[experiment_counter] if experiment_counter < len(lower_bounds) else default_lower_bounds
upper_bound = upper_bounds[experiment_counter] if experiment_counter < len(upper_bounds) else default_upper_bounds
bounds = (lower_bound, upper_bound)
# Ajustar el modelo
y_pred_biomass = model.fit_biomass(time, biomass, bounds)
y_pred_substrate = model.fit_substrate(time, substrate, model.params['biomass'], bounds)
y_pred_product = model.fit_product(time, product, model.params['biomass'], bounds)
# Usar el nombre del experimento proporcionado o un nombre por defecto
experiment_name = experiment_names[experiment_counter] if experiment_counter < len(experiment_names) else f"Tratamiento {experiment_counter + 1}"
fig = model.plot_combined_results(time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std, substrate_std, product_std,
experiment_name, legend_position, params_position,
show_legend, show_params,
style,
line_color, point_color, line_style, marker_style,
use_differential)
figures.append(fig)
experiment_counter += 1
return figures
def create_interface():
with gr.Blocks(theme='upsatwal/mlsc_tiet') as demo:
gr.Markdown("# Modelos de Bioproceso: Logístico y Luedeking-Piret")
gr.Markdown(
"Sube un archivo Excel con múltiples pestañas. Cada pestaña debe contener columnas 'Tiempo', 'Biomasa', 'Sustrato' y 'Producto' para cada experimento.")
file_input = gr.File(label="Subir archivo Excel")
with gr.Row():
with gr.Column():
legend_position = gr.Radio(
choices=["upper left", "upper right", "lower left", "lower right", "best"],
label="Posición de la leyenda",
value="best"
)
show_legend = gr.Checkbox(label="Mostrar Leyenda", value=True)
with gr.Column():
params_positions = ["upper left", "upper right", "lower left", "lower right", "outside right"]
params_position = gr.Radio(
choices=params_positions,
label="Posición de los parámetros",
value="upper right"
)
show_params = gr.Checkbox(label="Mostrar Parámetros", value=True)
model_type = gr.Radio(["logistic"], label="Tipo de Modelo", value="logistic")
mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent")
use_differential = gr.Checkbox(label="Usar ecuaciones diferenciales para graficar", value=False)
experiment_names = gr.Textbox(
label="Nombres de los experimentos (uno por línea)",
placeholder="Experimento 1\nExperimento 2\n...",
lines=5
)
with gr.Row():
with gr.Column():
lower_bounds = gr.Textbox(
label="Lower Bounds (uno por línea, formato: xo,xm,um)",
placeholder="0,0,0\n0,0,0\n...",
lines=5
)
with gr.Column():
upper_bounds = gr.Textbox(
label="Upper Bounds (uno por línea, formato: xo,xm,um)",
placeholder="inf,inf,inf\ninf,inf,inf\n...",
lines=5
)
# Añadir un desplegable para seleccionar el estilo del gráfico
styles = ['white', 'dark', 'whitegrid', 'darkgrid', 'ticks']
style_dropdown = gr.Dropdown(choices=styles, label="Selecciona el estilo de gráfico", value='whitegrid')
# Añadir color pickers para líneas y puntos
line_color_picker = gr.ColorPicker(label="Color de la línea", value='#0000FF')
point_color_picker = gr.ColorPicker(label="Color de los puntos", value='#000000')
# Añadir listas desplegables para tipo de línea y tipo de punto
line_style_options = ['-', '--', '-.', ':']
line_style_dropdown = gr.Dropdown(choices=line_style_options, label="Estilo de línea", value='-')
marker_style_options = ['o', 's', '^', 'v', 'D', 'x', '+', '*']
marker_style_dropdown = gr.Dropdown(choices=marker_style_options, label="Estilo de punto", value='o')
simulate_btn = gr.Button("Simular")
# Definir un componente gr.Gallery para las salidas
output_gallery = gr.Gallery(label="Resultados", columns=2, height='auto')
def process_and_plot(file, legend_position, params_position, model_type, mode, experiment_names,
lower_bounds, upper_bounds, style,
line_color, point_color, line_style, marker_style,
show_legend, show_params, use_differential):
# Dividir los nombres de experimentos y límites en listas
experiment_names_list = experiment_names.strip().split('\n') if experiment_names.strip() else []
lower_bounds_list = [tuple(map(float, lb.split(','))) for lb in
lower_bounds.strip().split('\n')] if lower_bounds.strip() else []
upper_bounds_list = [tuple(map(float, ub.split(','))) for ub in
upper_bounds.strip().split('\n')] if upper_bounds.strip() else []
# Procesar los datos y generar gráficos
figures = process_data(file, legend_position, params_position, model_type, experiment_names_list,
lower_bounds_list, upper_bounds_list, mode, style,
line_color, point_color, line_style, marker_style,
show_legend, show_params, use_differential)
# Convertir las figuras a imágenes y devolverlas como lista
image_list = []
for fig in figures:
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
image = Image.open(buf)
image_list.append(image)
return image_list
simulate_btn.click(
fn=process_and_plot,
inputs=[file_input,
legend_position,
params_position,
model_type,
mode,
experiment_names,
lower_bounds,
upper_bounds,
style_dropdown,
line_color_picker,
point_color_picker,
line_style_dropdown,
marker_style_dropdown,
show_legend,
show_params,
use_differential],
outputs=output_gallery
)
return demo
# Crear y lanzar la interfaz
demo = create_interface()
demo.launch(share=True)