File size: 6,724 Bytes
a689c79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# bioprocess_model.py

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
import seaborn as sns

class BioprocessModel:
    def __init__(self):
        self.params = {}
        self.r2 = {}
        self.rmse = {}
        self.datax = []
        self.datas = []
        self.datap = []
        self.dataxp = []
        self.datasp = []
        self.datapp = []
        self.datax_std = []
        self.datas_std = []
        self.datap_std = []

    @staticmethod
    def logistic(time, xo, xm, um):
        return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))

    @staticmethod
    def substrate(time, so, p, q, xo, xm, um):
        return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \
               (q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))

    @staticmethod
    def product(time, po, alpha, beta, xo, xm, um):
        return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \
               (beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))

    @staticmethod
    def logistic_diff(X, t, params):
        xo, xm, um = params
        dXdt = um * X * (1 - X / xm)
        return dXdt

    def substrate_diff(self, S, t, params, biomass_params, X_func):
        so, p, q = params
        xo, xm, um = biomass_params
        X_t = X_func(t)
        dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t
        return dSdt

    def product_diff(self, P, t, params, biomass_params, X_func):
        po, alpha, beta = params
        xo, xm, um = biomass_params
        X_t = X_func(t)
        dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t
        return dPdt

    def process_data(self, df):
        biomass_cols = [col for col in df.columns if 'Biomasa' in col]
        substrate_cols = [col for col in df.columns if 'Sustrato' in col]
        product_cols = [col for col in df.columns if 'Producto' in col]

        time_col = [col for col in df.columns if 'Tiempo' in col][0]
        time = df[time_col].values

        data_biomass = np.array([df[col].values for col in biomass_cols])
        self.datax.append(data_biomass)
        self.dataxp.append(np.mean(data_biomass, axis=0))
        self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))

        data_substrate = np.array([df[col].values for col in substrate_cols])
        self.datas.append(data_substrate)
        self.datasp.append(np.mean(data_substrate, axis=0))
        self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))

        data_product = np.array([df[col].values for col in product_cols])
        self.datap.append(data_product)
        self.datapp.append(np.mean(data_product, axis=0))
        self.datap_std.append(np.std(data_product, axis=0, ddof=1))

        self.time = time

    def fit_model(self, model_type='logistic'):
        if model_type == 'logistic':
            self.fit_biomass = self.fit_biomass_logistic
            self.fit_substrate = self.fit_substrate_logistic
            self.fit_product = self.fit_product_logistic

    def fit_biomass_logistic(self, time, biomass, bounds):
        popt, _ = curve_fit(self.logistic, time, biomass, bounds=bounds, maxfev=10000)
        self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]}
        y_pred = self.logistic(time, *popt)
        self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2))
        self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
        return y_pred

    def fit_substrate_logistic(self, time, substrate, biomass_params, bounds):
        popt, _ = curve_fit(lambda t, so, p, q: self.substrate(t, so, p, q, *biomass_params.values()),
                            time, substrate, bounds=bounds)
        self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
        y_pred = self.substrate(time, *popt, *biomass_params.values())
        self.r2['substrate'] = 1 - (np.sum((substrate - y_pred) ** 2) / np.sum((substrate - np.mean(substrate)) ** 2))
        self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred))
        return y_pred

    def fit_product_logistic(self, time, product, biomass_params, bounds):
        popt, _ = curve_fit(lambda t, po, alpha, beta: self.product(t, po, alpha, beta, *biomass_params.values()),
                            time, product, bounds=bounds)
        self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
        y_pred = self.product(time, *popt, *biomass_params.values())
        self.r2['product'] = 1 - (np.sum((product - y_pred) ** 2) / np.sum((product - np.mean(product)) ** 2))
        self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred))
        return y_pred

    def plot_combined_results(self, time, biomass, substrate, product,
                              y_pred_biomass, y_pred_substrate, y_pred_product,
                              biomass_std=None, substrate_std=None, product_std=None,
                              experiment_name='', legend_position='best', params_position='upper right',
                              show_legend=True, show_params=True,
                              style='whitegrid', line_color='#0000FF', point_color='#000000',
                              line_style='-', marker_style='o'):
        sns.set_style(style)

        fig, ax1 = plt.subplots(figsize=(10, 7))
        ax1.set_xlabel('Tiempo')
        ax1.set_ylabel('Biomasa', color=line_color)

        ax1.plot(time, biomass, marker=marker_style, linestyle='', color=point_color, label='Biomasa (Datos)')
        ax1.plot(time, y_pred_biomass, linestyle=line_style, color=line_color, label='Biomasa (Modelo)')
        ax1.tick_params(axis='y', labelcolor=line_color)

        ax2 = ax1.twinx()
        ax2.set_ylabel('Sustrato', color='green')
        ax2.plot(time, substrate, marker=marker_style, linestyle='', color='green', label='Sustrato (Datos)')
        ax2.plot(time, y_pred_substrate, linestyle=line_style, color='green', label='Sustrato (Modelo)')
        ax2.tick_params(axis='y', labelcolor='green')

        ax3 = ax1.twinx()
        ax3.spines["right"].set_position(("axes", 1.1))
        ax3.set_ylabel('Producto', color='red')
        ax3.plot(time, product, marker=marker_style, linestyle='', color='red', label='Producto (Datos)')
        ax3.plot(time, y_pred_product, linestyle=line_style, color='red', label='Producto (Modelo)')
        ax3.tick_params(axis='y', labelcolor='red')

        fig.tight_layout()
        return fig