Biotech2 / interface.py
C2MV's picture
Update interface.py
706a649 verified
raw
history blame
17.4 kB
# interface.py
# Importar 'spaces' y decoradores antes que cualquier biblioteca que pueda inicializar CUDA
from decorators import gpu_decorator
# Luego importar cualquier cosa relacionada con PyTorch o el modelo que va a usar la GPU
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import io
from sympy import symbols, lambdify, sympify
# Importar otras partes necesarias del código (config, etc.)
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
# Cargar el modelo fuera de la función para evitar la inicialización innecesaria cada vez que se llame a la función
model_path = MODEL_PATH
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
###############################
# bioprocess_model.py
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.integrate import odeint
from scipy.optimize import curve_fit
from sklearn.metrics import mean_squared_error
import seaborn as sns
class BioprocessModel:
def __init__(self):
self.params = {}
self.r2 = {}
self.rmse = {}
self.datax = []
self.datas = []
self.datap = []
self.dataxp = []
self.datasp = []
self.datapp = []
self.datax_std = []
self.datas_std = []
self.datap_std = []
self.models = {} # Initialize the models dictionary
@staticmethod
def logistic(time, xo, xm, um):
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))
@staticmethod
def substrate(time, so, p, q, xo, xm, um):
return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \
(q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
@staticmethod
def product(time, po, alpha, beta, xo, xm, um):
return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \
(beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
@staticmethod
def logistic_diff(X, t, params):
xo, xm, um = params
dXdt = um * X * (1 - X / xm)
return dXdt
def substrate_diff(self, S, t, params, biomass_params, X_func):
so, p, q = params
xo, xm, um = biomass_params
X_t = X_func(t)
dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t
return dSdt
def product_diff(self, P, t, params, biomass_params, X_func):
po, alpha, beta = params
xo, xm, um = biomass_params
X_t = X_func(t)
dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t
return dPdt
def process_data(self, df):
biomass_cols = [col for col in df.columns if 'Biomasa' in col]
substrate_cols = [col for col in df.columns if 'Sustrato' in col]
product_cols = [col for col in df.columns if 'Producto' in col]
time_col = [col for col in df.columns if 'Tiempo' in col][0]
time = df[time_col].values
data_biomass = np.array([df[col].values for col in biomass_cols])
self.datax.append(data_biomass)
self.dataxp.append(np.mean(data_biomass, axis=0))
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
data_substrate = np.array([df[col].values for col in substrate_cols])
self.datas.append(data_substrate)
self.datasp.append(np.mean(data_substrate, axis=0))
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
data_product = np.array([df[col].values for col in product_cols])
self.datap.append(data_product)
self.datapp.append(np.mean(data_product, axis=0))
self.datap_std.append(np.std(data_product, axis=0, ddof=1))
self.time = time
def set_model(self, model_type, equation, params_str):
"""
Sets up the model based on the type, equation, and parameters.
:param model_type: Type of the model ('biomass', 'substrate', 'product')
:param equation: The equation as a string
:param params_str: Comma-separated string of parameter names
"""
t_symbol = symbols('t')
expr = sympify(equation)
params = [param.strip() for param in params_str.split(',')]
params_symbols = symbols(params)
if model_type == 'biomass':
# Assuming biomass is a function of time only for logistic
func_expr = expr
func = lambdify(t_symbol, func_expr, 'numpy')
self.models['biomass'] = {
'function': func,
'params': params
}
elif model_type in ['substrate', 'product']:
# These models depend on biomass, which should already be set
if 'biomass' not in self.models:
raise ValueError("Biomass model must be set before substrate or product models.")
biomass_func = self.models['biomass']['function']
func_expr = expr.subs('X(t)', biomass_func(t_symbol))
func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy')
self.models[model_type] = {
'function': func,
'params': params
}
else:
raise ValueError(f"Unsupported model type: {model_type}")
def fit_model(self, model_type, time, data, bounds=([-np.inf], [np.inf])):
"""
Fits the model to the data.
:param model_type: Type of the model ('biomass', 'substrate', 'product')
:param time: Time data
:param data: Observed data to fit
:param bounds: Bounds for the parameters
:return: Predicted data from the model
"""
if model_type not in self.models:
raise ValueError(f"Model type '{model_type}' is not set. Please use set_model first.")
func = self.models[model_type]['function']
params = self.models[model_type]['params']
# Depuración: Asegurarse de que los parámetros estén bien definidos
print(f"Fitting {model_type} model with function: {func} and parameters: {params}")
# Define the fitting function based on model type
if model_type == 'biomass':
def fit_func(t, *args):
return func(t, *args)
else:
def fit_func(t, *args):
return func(t, *args)
# Depuración: Verificar el número de parámetros que se espera ajustar
print(f"Number of parameters to fit: {len(params)}")
try:
# Ajustar el modelo usando curve_fit
popt, _ = curve_fit(fit_func, time, data, bounds=bounds, maxfev=10000)
print(f"Optimal parameters found: {popt}")
# Guardar los parámetros ajustados en el modelo
self.params[model_type] = {param: val for param, val in zip(params, popt)}
y_pred = fit_func(time, *popt)
self.r2[model_type] = 1 - (np.sum((data - y_pred) ** 2) / np.sum((data - np.mean(data)) ** 2))
self.rmse[model_type] = np.sqrt(mean_squared_error(data, y_pred))
return y_pred
except Exception as e:
print(f"Error while fitting {model_type} model: {str(e)}")
raise
def plot_combined_results(self, time, biomass, substrate, product,
y_pred_biomass, y_pred_substrate, y_pred_product,
biomass_std=None, substrate_std=None, product_std=None,
experiment_name='', legend_position='best', params_position='upper right',
show_legend=True, show_params=True,
style='whitegrid', line_color='#0000FF', point_color='#000000',
line_style='-', marker_style='o'):
sns.set_style(style)
fig, ax1 = plt.subplots(figsize=(10, 7))
ax1.set_xlabel('Tiempo')
ax1.set_ylabel('Biomasa', color=line_color)
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=point_color, label='Biomasa (Datos)')
ax1.plot(time, y_pred_biomass, linestyle=line_style, color=line_color, label='Biomasa (Modelo)')
ax1.tick_params(axis='y', labelcolor=line_color)
ax2 = ax1.twinx()
ax2.set_ylabel('Sustrato', color='green')
ax2.plot(time, substrate, marker=marker_style, linestyle='', color='green', label='Sustrato (Datos)')
ax2.plot(time, y_pred_substrate, linestyle=line_style, color='green', label='Sustrato (Modelo)')
ax2.tick_params(axis='y', labelcolor='green')
ax3 = ax1.twinx()
ax3.spines["right"].set_position(("axes", 1.1))
ax3.set_ylabel('Producto', color='red')
ax3.plot(time, product, marker=marker_style, linestyle='', color='red', label='Producto (Datos)')
ax3.plot(time, y_pred_product, linestyle=line_style, color='red', label='Producto (Modelo)')
ax3.tick_params(axis='y', labelcolor='red')
fig.tight_layout()
return fig
###############################
# Decorador GPU aplicado para manejar la ejecución en GPU si está disponible
@gpu_decorator(duration=300)
def generate_analysis(prompt, max_length=1024, device=None):
try:
# Si el dispositivo no se especifica, usa CPU por defecto
if device is None:
device = torch.device('cpu')
# Mover el modelo al dispositivo adecuado (GPU o CPU) si es necesario
if next(model.parameters()).device != device:
model.to(device)
# Preparar los datos de entrada en el dispositivo correcto
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)
# Generar el texto
generated_ids = model.generate(
input_ids=input_ids,
max_length=max_gen_length,
temperature=0.7,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decodificar la respuesta generada
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
analysis = output_text[len(prompt):].strip()
return analysis
except RuntimeError as e:
return f"Error durante la ejecución: {str(e)}"
except Exception as e:
return f"Ocurrió un error durante el análisis: {e}"
def parse_bounds(bounds_str, num_params):
try:
bounds = eval(f"[{bounds_str}]")
if len(bounds) != num_params:
raise ValueError
lower_bounds = [b[0] for b in bounds]
upper_bounds = [b[1] for b in bounds]
return lower_bounds, upper_bounds
except:
lower_bounds = [-np.inf] * num_params
upper_bounds = [np.inf] * num_params
return lower_bounds, upper_bounds
def process_and_plot(
file,
biomass_eq1, biomass_eq2, biomass_eq3,
biomass_param1, biomass_param2, biomass_param3,
biomass_bound1, biomass_bound2, biomass_bound3,
substrate_eq1, substrate_eq2, substrate_eq3,
substrate_param1, substrate_param2, substrate_param3,
substrate_bound1, substrate_bound2, substrate_bound3,
product_eq1, product_eq2, product_eq3,
product_param1, product_param2, product_param3,
product_bound1, product_bound2, product_bound3,
legend_position,
show_legend,
show_params,
biomass_eq_count,
substrate_eq_count,
product_eq_count,
device=None
):
# Leer el archivo Excel
df = pd.read_excel(file.name)
# Verificar que las columnas necesarias estén presentes
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
for col in expected_columns:
if col not in df.columns:
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
# Asignar los datos desde las columnas
time = df['Tiempo'].values
biomass_data = df['Biomasa'].values
substrate_data = df['Sustrato'].values
product_data = df['Producto'].values
# Convierte los contadores a enteros
biomass_eq_count = int(biomass_eq_count)
substrate_eq_count = int(substrate_eq_count)
product_eq_count = int(product_eq_count)
# Recolecta las ecuaciones, parámetros y límites según los contadores
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
biomass_results = []
substrate_results = []
product_results = []
# Ajusta los modelos de Biomasa
for i in range(len(biomass_eqs)):
equation = biomass_eqs[i]
params_str = biomass_params[i]
bounds_str = biomass_bounds[i]
model = BioprocessModel()
model.set_model('biomass', equation, params_str)
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'biomass', time, biomass_data,
bounds=(lower_bounds, upper_bounds)
)
biomass_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Usa el primer modelo de biomasa para X(t)
biomass_model = biomass_results[0]['model']
biomass_params_values = list(biomass_model.params['biomass'].values())
biomass_func = biomass_model.models['biomass']['function']
# Ajusta los modelos de Sustrato
for i in range(len(substrate_eqs)):
equation = substrate_eqs[i]
params_str = substrate_params[i]
bounds_str = substrate_bounds[i]
model = BioprocessModel()
model.set_model('substrate', equation, params_str)
params = model.models['substrate']['params']
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'substrate', time, substrate_data,
bounds=(lower_bounds, upper_bounds)
)
substrate_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Ajusta los modelos de Producto
for i in range(len(product_eqs)):
equation = product_eqs[i]
params_str = product_params[i]
bounds_str = product_bounds[i]
model = BioprocessModel()
model.set_model('product', equation, params_str)
params = model.models['product']['params']
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'product', time, product_data,
bounds=(lower_bounds, upper_bounds)
)
product_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Genera las gráficas
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
# Gráfica de Biomasa
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
for i, result in enumerate(biomass_results):
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
axs[0].set_xlabel('Tiempo')
axs[0].set_ylabel('Biomasa')
if show_legend:
axs[0].legend(loc=legend_position)
# Gráfica de Sustrato
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
for i, result in enumerate(substrate_results):
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
axs[1].set_xlabel('Tiempo')
axs[1].set_ylabel('Sustrato')
if show_legend:
axs[1].legend(loc=legend_position)
# Gráfica de Producto
axs[2].plot(time, product_data, 'o', label='Datos de Producto')
for i, result in enumerate(product_results):
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
axs[2].set_xlabel('Tiempo')
axs[2].set_ylabel('Producto')
if show_legend:
axs[2].legend(loc=legend_position)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = Image.open(buf)
prompt = f"""
Eres un experto en modelado de bioprocesos.
Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.
Biomasa:
{biomass_results}
Sustrato:
{substrate_results}
Producto:
{product_results}
"""
analysis = generate_analysis(prompt, device=device)
return [image], analysis