Biotech2 / interface.py
C2MV's picture
Update interface.py
612f2cd verified
raw
history blame
10 kB
# interface.py
# Importar 'spaces' y decoradores antes que cualquier biblioteca que pueda inicializar CUDA
from decorators import gpu_decorator
# Luego importar cualquier cosa relacionada con PyTorch o el modelo que va a usar la GPU
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import io
from sympy import symbols, lambdify, sympify
# Importar otras partes necesarias del c贸digo (config, etc.)
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
# Cargar el modelo fuera de la funci贸n para evitar la inicializaci贸n innecesaria cada vez que se llame a la funci贸n
model_path = MODEL_PATH
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
# Decorador GPU aplicado para manejar la ejecuci贸n en GPU si est谩 disponible
@gpu_decorator(duration=300)
def generate_analysis(prompt, max_length=1024, device=None):
try:
# Si el dispositivo no se especifica, usa CPU por defecto
if device is None:
device = torch.device('cpu')
# Mover el modelo al dispositivo adecuado (GPU o CPU) si es necesario
if next(model.parameters()).device != device:
model.to(device)
# Preparar los datos de entrada en el dispositivo correcto
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)
# Generar el texto
generated_ids = model.generate(
input_ids=input_ids,
max_length=max_gen_length,
temperature=0.7,
num_return_sequences=1,
no_repeat_ngram_size=2,
early_stopping=True
)
# Decodificar la respuesta generada
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
analysis = output_text[len(prompt):].strip()
return analysis
except RuntimeError as e:
return f"Error durante la ejecuci贸n: {str(e)}"
except Exception as e:
return f"Ocurri贸 un error durante el an谩lisis: {e}"
def parse_bounds(bounds_str, num_params):
try:
bounds = eval(f"[{bounds_str}]")
if len(bounds) != num_params:
raise ValueError
lower_bounds = [b[0] for b in bounds]
upper_bounds = [b[1] for b in bounds]
return lower_bounds, upper_bounds
except:
lower_bounds = [-np.inf] * num_params
upper_bounds = [np.inf] * num_params
return lower_bounds, upper_bounds
def process_and_plot(
file,
biomass_eq1, biomass_eq2, biomass_eq3,
biomass_param1, biomass_param2, biomass_param3,
biomass_bound1, biomass_bound2, biomass_bound3,
substrate_eq1, substrate_eq2, substrate_eq3,
substrate_param1, substrate_param2, substrate_param3,
substrate_bound1, substrate_bound2, substrate_bound3,
product_eq1, product_eq2, product_eq3,
product_param1, product_param2, product_param3,
product_bound1, product_bound2, product_bound3,
legend_position,
show_legend,
show_params,
biomass_eq_count,
substrate_eq_count,
product_eq_count,
device=None
):
# Leer el archivo Excel
df = pd.read_excel(file.name)
# Verificar que las columnas necesarias est茅n presentes
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
for col in expected_columns:
if col not in df.columns:
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
# Asignar los datos desde las columnas
time = df['Tiempo'].values
biomass_data = df['Biomasa'].values
substrate_data = df['Sustrato'].values
product_data = df['Producto'].values
# Convierte los contadores a enteros
biomass_eq_count = int(biomass_eq_count)
substrate_eq_count = int(substrate_eq_count)
product_eq_count = int(product_eq_count)
# Recolecta las ecuaciones, par谩metros y l铆mites seg煤n los contadores
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
biomass_results = []
substrate_results = []
product_results = []
# Ajusta los modelos de Biomasa
for i in range(len(biomass_eqs)):
equation = biomass_eqs[i]
params_str = biomass_params[i]
bounds_str = biomass_bounds[i]
model = BioprocessModel()
model.set_model('biomass', equation, params_str)
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'biomass', time, biomass_data,
bounds=(lower_bounds, upper_bounds)
)
biomass_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Usa el primer modelo de biomasa para X(t)
biomass_model = biomass_results[0]['model']
X_t_func = biomass_model.models['biomass']['function']
biomass_params_values = list(biomass_model.params['biomass'].values())
# Ajusta los modelos de Sustrato
for i in range(len(substrate_eqs)):
equation = substrate_eqs[i]
params_str = substrate_params[i]
bounds_str = substrate_bounds[i]
model = BioprocessModel()
t_symbol = symbols('t')
expr_substrate = sympify(equation)
substrate_params_symbols = symbols([param.strip() for param in params_str.split(',')])
substrate_func_expr = expr_substrate.subs('X(t)', X_t_func(t_symbol, *biomass_params_values))
substrate_func = lambdify(
(t_symbol, *substrate_params_symbols),
substrate_func_expr,
'numpy'
)
model.models['substrate'] = {
'function': substrate_func,
'params': [param.strip() for param in params_str.split(',')]
}
params = model.models['substrate']['params']
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'substrate', time, substrate_data,
bounds=(lower_bounds, upper_bounds)
)
substrate_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Ajusta los modelos de Producto
for i in range(len(product_eqs)):
equation = product_eqs[i]
params_str = product_params[i]
bounds_str = product_bounds[i]
model = BioprocessModel()
t_symbol = symbols('t')
expr_product = sympify(equation)
product_params_symbols = symbols([param.strip() for param in params_str.split(',')])
product_func_expr = expr_product.subs('X(t)', X_t_func(t_symbol, *biomass_params_values))
product_func = lambdify(
(t_symbol, *product_params_symbols),
product_func_expr,
'numpy'
)
model.models['product'] = {
'function': product_func,
'params': [param.strip() for param in params_str.split(',')]
}
params = model.models['product']['params']
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
y_pred = model.fit_model(
'product', time, product_data,
bounds=(lower_bounds, upper_bounds)
)
product_results.append({
'model': model,
'y_pred': y_pred,
'equation': equation
})
# Genera las gr谩ficas
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
# Gr谩fica de Biomasa
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
for i, result in enumerate(biomass_results):
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
axs[0].set_xlabel('Tiempo')
axs[0].set_ylabel('Biomasa')
if show_legend:
axs[0].legend(loc=legend_position)
# Gr谩fica de Sustrato
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
for i, result in enumerate(substrate_results):
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
axs[1].set_xlabel('Tiempo')
axs[1].set_ylabel('Sustrato')
if show_legend:
axs[1].legend(loc=legend_position)
# Gr谩fica de Producto
axs[2].plot(time, product_data, 'o', label='Datos de Producto')
for i, result in enumerate(product_results):
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
axs[2].set_xlabel('Tiempo')
axs[2].set_ylabel('Producto')
if show_legend:
axs[2].legend(loc=legend_position)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = Image.open(buf)
prompt = f"""
Eres un experto en modelado de bioprocesos.
Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.
Biomasa:
{biomass_results}
Sustrato:
{substrate_results}
Producto:
{product_results}
"""
analysis = generate_analysis(prompt, device=device)
return [image], analysis