Biotech2 / interface.py
C2MV's picture
Update interface.py
99d8601 verified
raw
history blame
9.95 kB
# interface.py
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import io
from bioprocess_model import BioprocessModel
from decorators import gpu_decorator # Asegúrate de que la ruta es correcta
# Nuevas importaciones para Yi-Coder
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import json
# Inicialización del dispositivo
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = "Qwen/Qwen2.5-7B-Instruct" #"01-ai/Yi-Coder-9B-Chat"
# Carga del tokenizer y modelo
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path).to(device).eval()
def parse_bounds(bounds_str, num_params):
try:
# Reemplazar 'inf' por 'np.inf' si el usuario lo escribió así
bounds_str = bounds_str.replace('inf', 'np.inf')
# Evaluar la cadena de límites
bounds = eval(f"[{bounds_str}]")
if len(bounds) != num_params:
raise ValueError("Número de límites no coincide con el número de parámetros.")
lower_bounds = [b[0] for b in bounds]
upper_bounds = [b[1] for b in bounds]
return lower_bounds, upper_bounds
except Exception as e:
print(f"Error al parsear los límites: {e}. Usando límites por defecto.")
lower_bounds = [-np.inf] * num_params
upper_bounds = [np.inf] * num_params
return lower_bounds, upper_bounds
def generate_analysis(prompt, max_length=100): # Reducido a 100
"""
Genera un análisis utilizando el modelo Yi-Coder-9B-Chat.
"""
try:
# Tokenizar el prompt y mover los tensores al dispositivo correcto
inputs = tokenizer(prompt, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_length, # Limitar la generación a 100 tokens
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id
)
analysis = tokenizer.decode(outputs[0], skip_special_tokens=True)
return analysis
except Exception as e:
print(f"Error al generar el análisis con Yi-Coder: {e}. Usando análisis por defecto.")
return "Análisis generado por el modelo de lenguaje."
@gpu_decorator(duration=100) # Reducido de 600 a 100 segundos
def process_and_plot(
file,
biomass_eq1, biomass_eq2, biomass_eq3,
biomass_param1, biomass_param2, biomass_param3,
biomass_bound1, biomass_bound2, biomass_bound3,
substrate_eq1, substrate_eq2, substrate_eq3,
substrate_param1, substrate_param2, substrate_param3,
substrate_bound1, substrate_bound2, substrate_bound3,
product_eq1, product_eq2, product_eq3,
product_param1, product_param2, product_param3,
product_bound1, product_bound2, product_bound3,
legend_position,
show_legend,
show_params,
biomass_eq_count,
substrate_eq_count,
product_eq_count
):
# Leer el archivo Excel
df = pd.read_excel(file.name)
# Verificar que las columnas necesarias estén presentes
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
for col in expected_columns:
if col not in df.columns:
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
# Asignar los datos desde las columnas
time = df['Tiempo'].values
biomass_data = df['Biomasa'].values
substrate_data = df['Sustrato'].values
product_data = df['Producto'].values
# Convierte los contadores a enteros
biomass_eq_count = int(biomass_eq_count)
substrate_eq_count = int(substrate_eq_count)
product_eq_count = int(product_eq_count)
# Recolecta las ecuaciones, parámetros y límites según los contadores
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
biomass_results = []
substrate_results = []
product_results = []
# Inicializar el modelo principal
main_model = BioprocessModel()
# Ajusta los modelos de Biomasa
for i in range(len(biomass_eqs)):
equation = biomass_eqs[i]
params_str = biomass_params[i]
bounds_str = biomass_bounds[i]
try:
main_model.set_model_biomass(equation, params_str)
except ValueError as ve:
raise ValueError(f"Error en la configuración del modelo de biomasa {i+1}: {ve}")
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
try:
y_pred = main_model.fit_model(
'biomass', time, biomass_data,
bounds=(lower_bounds, upper_bounds)
)
biomass_results.append({
'y_pred': y_pred.tolist(), # Convertir a lista para serialización
'equation': equation,
'params': main_model.params['biomass']
})
except Exception as e:
raise RuntimeError(f"Error al ajustar el modelo de biomasa {i+1}: {e}")
# Ajusta los modelos de Sustrato
for i in range(len(substrate_eqs)):
equation = substrate_eqs[i]
params_str = substrate_params[i]
bounds_str = substrate_bounds[i]
try:
main_model.set_model_substrate(equation, params_str)
except ValueError as ve:
raise ValueError(f"Error en la configuración del modelo de sustrato {i+1}: {ve}")
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
try:
y_pred = main_model.fit_model(
'substrate', time, substrate_data,
bounds=(lower_bounds, upper_bounds)
)
substrate_results.append({
'y_pred': y_pred.tolist(), # Convertir a lista para serialización
'equation': equation,
'params': main_model.params['substrate']
})
except Exception as e:
raise RuntimeError(f"Error al ajustar el modelo de sustrato {i+1}: {e}")
# Ajusta los modelos de Producto
for i in range(len(product_eqs)):
equation = product_eqs[i]
params_str = product_params[i]
bounds_str = product_bounds[i]
try:
main_model.set_model_product(equation, params_str)
except ValueError as ve:
raise ValueError(f"Error en la configuración del modelo de producto {i+1}: {ve}")
params = [param.strip() for param in params_str.split(',')]
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
try:
y_pred = main_model.fit_model(
'product', time, product_data,
bounds=(lower_bounds, upper_bounds)
)
product_results.append({
'y_pred': y_pred.tolist(), # Convertir a lista para serialización
'equation': equation,
'params': main_model.params['product']
})
except Exception as e:
raise RuntimeError(f"Error al ajustar el modelo de producto {i+1}: {e}")
# Genera las gráficas
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
# Gráfica de Biomasa
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
for i, result in enumerate(biomass_results):
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
axs[0].set_xlabel('Tiempo')
axs[0].set_ylabel('Biomasa')
if show_legend:
axs[0].legend(loc=legend_position)
# Gráfica de Sustrato
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
for i, result in enumerate(substrate_results):
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
axs[1].set_xlabel('Tiempo')
axs[1].set_ylabel('Sustrato')
if show_legend:
axs[1].legend(loc=legend_position)
# Gráfica de Producto
axs[2].plot(time, product_data, 'o', label='Datos de Producto')
for i, result in enumerate(product_results):
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
axs[2].set_xlabel('Tiempo')
axs[2].set_ylabel('Producto')
if show_legend:
axs[2].legend(loc=legend_position)
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = Image.open(buf)
# Construcción del prompt para Yi-Coder
prompt = f"""
Analiza estos resultados de cinética y parámetros de bioprocesos, como experto:
Biomasa:
{json.dumps(biomass_results, indent=2)}
Sustrato:
{json.dumps(substrate_results, indent=2)}
Producto:
{json.dumps(product_results, indent=2)}
Para cada cinética (Biomasa, Sustrato, Producto):
1. Evalúa el modelo (ajuste, parámetros)
2. Identifica problemas específicos
3. Sugiere mejoras concretas
Concluye con un veredicto general sobre la calidad del modelado.
"""
# Generar el análisis utilizando Yi-Coder
analysis = generate_analysis(prompt, max_length=1500) # Reducido a 100
return image, analysis