|
|
|
|
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
import io |
|
|
|
from bioprocess_model import BioprocessModel |
|
from decorators import gpu_decorator |
|
|
|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import json |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model_path = "Qwen/Qwen2.5-7B-Instruct" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path).to(device).eval() |
|
|
|
def parse_bounds(bounds_str, num_params): |
|
try: |
|
|
|
bounds_str = bounds_str.replace('inf', 'np.inf') |
|
|
|
bounds = eval(f"[{bounds_str}]") |
|
if len(bounds) != num_params: |
|
raise ValueError("Número de límites no coincide con el número de parámetros.") |
|
lower_bounds = [b[0] for b in bounds] |
|
upper_bounds = [b[1] for b in bounds] |
|
return lower_bounds, upper_bounds |
|
except Exception as e: |
|
print(f"Error al parsear los límites: {e}. Usando límites por defecto.") |
|
lower_bounds = [-np.inf] * num_params |
|
upper_bounds = [np.inf] * num_params |
|
return lower_bounds, upper_bounds |
|
|
|
def generate_analysis(prompt, max_length=100): |
|
""" |
|
Genera un análisis utilizando el modelo Yi-Coder-9B-Chat. |
|
""" |
|
try: |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=max_length, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
|
|
analysis = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return analysis |
|
except Exception as e: |
|
print(f"Error al generar el análisis con Yi-Coder: {e}. Usando análisis por defecto.") |
|
return "Análisis generado por el modelo de lenguaje." |
|
|
|
@gpu_decorator(duration=100) |
|
def process_and_plot( |
|
file, |
|
biomass_eq1, biomass_eq2, biomass_eq3, |
|
biomass_param1, biomass_param2, biomass_param3, |
|
biomass_bound1, biomass_bound2, biomass_bound3, |
|
substrate_eq1, substrate_eq2, substrate_eq3, |
|
substrate_param1, substrate_param2, substrate_param3, |
|
substrate_bound1, substrate_bound2, substrate_bound3, |
|
product_eq1, product_eq2, product_eq3, |
|
product_param1, product_param2, product_param3, |
|
product_bound1, product_bound2, product_bound3, |
|
legend_position, |
|
show_legend, |
|
show_params, |
|
biomass_eq_count, |
|
substrate_eq_count, |
|
product_eq_count |
|
): |
|
|
|
df = pd.read_excel(file.name) |
|
|
|
|
|
expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto'] |
|
for col in expected_columns: |
|
if col not in df.columns: |
|
raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.") |
|
|
|
|
|
time = df['Tiempo'].values |
|
biomass_data = df['Biomasa'].values |
|
substrate_data = df['Sustrato'].values |
|
product_data = df['Producto'].values |
|
|
|
|
|
biomass_eq_count = int(biomass_eq_count) |
|
substrate_eq_count = int(substrate_eq_count) |
|
product_eq_count = int(product_eq_count) |
|
|
|
|
|
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count] |
|
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count] |
|
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count] |
|
|
|
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count] |
|
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count] |
|
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count] |
|
|
|
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count] |
|
product_params = [product_param1, product_param2, product_param3][:product_eq_count] |
|
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count] |
|
|
|
biomass_results = [] |
|
substrate_results = [] |
|
product_results = [] |
|
|
|
|
|
main_model = BioprocessModel() |
|
|
|
|
|
for i in range(len(biomass_eqs)): |
|
equation = biomass_eqs[i] |
|
params_str = biomass_params[i] |
|
bounds_str = biomass_bounds[i] |
|
|
|
try: |
|
main_model.set_model_biomass(equation, params_str) |
|
except ValueError as ve: |
|
raise ValueError(f"Error en la configuración del modelo de biomasa {i+1}: {ve}") |
|
|
|
params = [param.strip() for param in params_str.split(',')] |
|
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) |
|
|
|
try: |
|
y_pred = main_model.fit_model( |
|
'biomass', time, biomass_data, |
|
bounds=(lower_bounds, upper_bounds) |
|
) |
|
biomass_results.append({ |
|
'y_pred': y_pred.tolist(), |
|
'equation': equation, |
|
'params': main_model.params['biomass'] |
|
}) |
|
except Exception as e: |
|
raise RuntimeError(f"Error al ajustar el modelo de biomasa {i+1}: {e}") |
|
|
|
|
|
for i in range(len(substrate_eqs)): |
|
equation = substrate_eqs[i] |
|
params_str = substrate_params[i] |
|
bounds_str = substrate_bounds[i] |
|
|
|
try: |
|
main_model.set_model_substrate(equation, params_str) |
|
except ValueError as ve: |
|
raise ValueError(f"Error en la configuración del modelo de sustrato {i+1}: {ve}") |
|
|
|
params = [param.strip() for param in params_str.split(',')] |
|
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) |
|
|
|
try: |
|
y_pred = main_model.fit_model( |
|
'substrate', time, substrate_data, |
|
bounds=(lower_bounds, upper_bounds) |
|
) |
|
substrate_results.append({ |
|
'y_pred': y_pred.tolist(), |
|
'equation': equation, |
|
'params': main_model.params['substrate'] |
|
}) |
|
except Exception as e: |
|
raise RuntimeError(f"Error al ajustar el modelo de sustrato {i+1}: {e}") |
|
|
|
|
|
for i in range(len(product_eqs)): |
|
equation = product_eqs[i] |
|
params_str = product_params[i] |
|
bounds_str = product_bounds[i] |
|
|
|
try: |
|
main_model.set_model_product(equation, params_str) |
|
except ValueError as ve: |
|
raise ValueError(f"Error en la configuración del modelo de producto {i+1}: {ve}") |
|
|
|
params = [param.strip() for param in params_str.split(',')] |
|
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) |
|
|
|
try: |
|
y_pred = main_model.fit_model( |
|
'product', time, product_data, |
|
bounds=(lower_bounds, upper_bounds) |
|
) |
|
product_results.append({ |
|
'y_pred': y_pred.tolist(), |
|
'equation': equation, |
|
'params': main_model.params['product'] |
|
}) |
|
except Exception as e: |
|
raise RuntimeError(f"Error al ajustar el modelo de producto {i+1}: {e}") |
|
|
|
|
|
fig, axs = plt.subplots(3, 1, figsize=(10, 15)) |
|
|
|
|
|
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa') |
|
for i, result in enumerate(biomass_results): |
|
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}') |
|
axs[0].set_xlabel('Tiempo') |
|
axs[0].set_ylabel('Biomasa') |
|
if show_legend: |
|
axs[0].legend(loc=legend_position) |
|
|
|
|
|
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato') |
|
for i, result in enumerate(substrate_results): |
|
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}') |
|
axs[1].set_xlabel('Tiempo') |
|
axs[1].set_ylabel('Sustrato') |
|
if show_legend: |
|
axs[1].legend(loc=legend_position) |
|
|
|
|
|
axs[2].plot(time, product_data, 'o', label='Datos de Producto') |
|
for i, result in enumerate(product_results): |
|
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}') |
|
axs[2].set_xlabel('Tiempo') |
|
axs[2].set_ylabel('Producto') |
|
if show_legend: |
|
axs[2].legend(loc=legend_position) |
|
|
|
plt.tight_layout() |
|
buf = io.BytesIO() |
|
plt.savefig(buf, format='png') |
|
buf.seek(0) |
|
image = Image.open(buf) |
|
|
|
|
|
prompt = f""" |
|
Analiza estos resultados de cinética y parámetros de bioprocesos, como experto: |
|
|
|
Biomasa: |
|
{json.dumps(biomass_results, indent=2)} |
|
|
|
Sustrato: |
|
{json.dumps(substrate_results, indent=2)} |
|
|
|
Producto: |
|
{json.dumps(product_results, indent=2)} |
|
|
|
Para cada cinética (Biomasa, Sustrato, Producto): |
|
1. Evalúa el modelo (ajuste, parámetros) |
|
2. Identifica problemas específicos |
|
3. Sugiere mejoras concretas |
|
|
|
Concluye con un veredicto general sobre la calidad del modelado. |
|
""" |
|
|
|
|
|
analysis = generate_analysis(prompt, max_length=1500) |
|
|
|
return image, analysis |
|
|