Update interface.py
Browse files- interface.py +23 -399
interface.py
CHANGED
@@ -12,30 +12,37 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
12 |
from sympy import symbols, sympify, lambdify
|
13 |
import copy
|
14 |
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
|
15 |
-
from decorators import spaces # Import the spaces class
|
16 |
|
|
|
17 |
device = DEVICE
|
18 |
-
|
|
|
|
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
-
model = AutoModelForCausalLM.from_pretrained(model_path)
|
|
|
|
|
21 |
|
22 |
-
@
|
23 |
def generate_analysis(prompt, max_length=MAX_LENGTH):
|
24 |
try:
|
25 |
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
|
|
|
|
26 |
generated_ids = model.generate(
|
27 |
input_ids=input_ids,
|
28 |
-
max_length=
|
29 |
temperature=TEMPERATURE,
|
30 |
num_return_sequences=1,
|
31 |
no_repeat_ngram_size=2,
|
32 |
early_stopping=True
|
33 |
)
|
|
|
34 |
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
35 |
analysis = output_text[len(prompt):].strip()
|
36 |
return analysis
|
37 |
except Exception as e:
|
38 |
-
return f"
|
39 |
|
40 |
def parse_bounds(bounds_str, num_params):
|
41 |
try:
|
@@ -50,404 +57,21 @@ def parse_bounds(bounds_str, num_params):
|
|
50 |
upper_bounds = [np.inf] * num_params
|
51 |
return lower_bounds, upper_bounds
|
52 |
|
53 |
-
@spaces.GPU
|
|
|
54 |
def process_and_plot(
|
55 |
file,
|
56 |
-
|
57 |
-
|
58 |
-
biomass_bound1, biomass_bound2, biomass_bound3,
|
59 |
-
substrate_eq1, substrate_eq2, substrate_eq3,
|
60 |
-
substrate_param1, substrate_param2, substrate_param3,
|
61 |
-
substrate_bound1, substrate_bound2, substrate_bound3,
|
62 |
-
product_eq1, product_eq2, product_eq3,
|
63 |
-
product_param1, product_param2, product_param3,
|
64 |
-
product_bound1, product_bound2, product_bound3,
|
65 |
-
legend_position,
|
66 |
-
show_legend,
|
67 |
-
show_params,
|
68 |
-
biomass_eq_count,
|
69 |
-
substrate_eq_count,
|
70 |
-
product_eq_count
|
71 |
):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
|
77 |
-
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
|
78 |
-
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
|
79 |
-
|
80 |
-
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
|
81 |
-
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
|
82 |
-
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
|
83 |
-
|
84 |
-
df = pd.read_excel(file.name)
|
85 |
-
time = df['Time'].values
|
86 |
-
biomass_data = df['Biomass'].values
|
87 |
-
substrate_data = df['Substrate'].values
|
88 |
-
product_data = df['Product'].values
|
89 |
-
|
90 |
-
biomass_results = []
|
91 |
-
substrate_results = []
|
92 |
-
product_results = []
|
93 |
-
|
94 |
-
for i in range(len(biomass_eqs)):
|
95 |
-
equation = biomass_eqs[i]
|
96 |
-
params_str = biomass_params[i]
|
97 |
-
bounds_str = biomass_bounds[i]
|
98 |
-
|
99 |
-
model = BioprocessModel()
|
100 |
-
model.set_model('biomass', equation, params_str)
|
101 |
-
|
102 |
-
params = [param.strip() for param in params_str.split(',')]
|
103 |
-
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
104 |
-
|
105 |
-
y_pred = model.fit_model(
|
106 |
-
'biomass', time, biomass_data,
|
107 |
-
bounds=(lower_bounds, upper_bounds)
|
108 |
-
)
|
109 |
-
biomass_results.append({
|
110 |
-
'model': copy.deepcopy(model),
|
111 |
-
'y_pred': y_pred,
|
112 |
-
'equation': equation
|
113 |
-
})
|
114 |
-
|
115 |
-
biomass_model = biomass_results[0]['model']
|
116 |
-
X_t = biomass_model.models['biomass']['function']
|
117 |
-
biomass_params_values = list(biomass_model.params['biomass'].values())
|
118 |
-
|
119 |
-
for i in range(len(substrate_eqs)):
|
120 |
-
equation = substrate_eqs[i]
|
121 |
-
params_str = substrate_params[i]
|
122 |
-
bounds_str = substrate_bounds[i]
|
123 |
-
|
124 |
-
model = BioprocessModel()
|
125 |
-
|
126 |
-
t_symbol = symbols('t')
|
127 |
-
expr_substrate = sympify(equation)
|
128 |
-
substrate_params_symbols = symbols([param.strip() for param in params_str.split(',')])
|
129 |
-
substrate_func = lambdify(
|
130 |
-
(t_symbol, *substrate_params_symbols),
|
131 |
-
expr_substrate.subs('X(t)', X_t(t_symbol, *biomass_params_values)),
|
132 |
-
'numpy'
|
133 |
-
)
|
134 |
-
model.models['substrate'] = {
|
135 |
-
'function': substrate_func,
|
136 |
-
'params': [param.strip() for param in params_str.split(',')]
|
137 |
-
}
|
138 |
-
|
139 |
-
params = model.models['substrate']['params']
|
140 |
-
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
141 |
-
|
142 |
-
y_pred = model.fit_model(
|
143 |
-
'substrate', time, substrate_data,
|
144 |
-
bounds=(lower_bounds, upper_bounds)
|
145 |
-
)
|
146 |
-
substrate_results.append({
|
147 |
-
'model': copy.deepcopy(model),
|
148 |
-
'y_pred': y_pred,
|
149 |
-
'equation': equation
|
150 |
-
})
|
151 |
-
|
152 |
-
for i in range(len(product_eqs)):
|
153 |
-
equation = product_eqs[i]
|
154 |
-
params_str = product_params[i]
|
155 |
-
bounds_str = product_bounds[i]
|
156 |
-
|
157 |
-
model = BioprocessModel()
|
158 |
-
|
159 |
-
t_symbol = symbols('t')
|
160 |
-
expr_product = sympify(equation)
|
161 |
-
product_params_symbols = symbols([param.strip() for param in params_str.split(',')])
|
162 |
-
product_func = lambdify(
|
163 |
-
(t_symbol, *product_params_symbols),
|
164 |
-
expr_product.subs('X(t)', X_t(t_symbol, *biomass_params_values)),
|
165 |
-
'numpy'
|
166 |
-
)
|
167 |
-
model.models['product'] = {
|
168 |
-
'function': product_func,
|
169 |
-
'params': [param.strip() for param in params_str.split(',')]
|
170 |
-
}
|
171 |
-
|
172 |
-
params = model.models['product']['params']
|
173 |
-
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
174 |
-
|
175 |
-
y_pred = model.fit_model(
|
176 |
-
'product', time, product_data,
|
177 |
-
bounds=(lower_bounds, upper_bounds)
|
178 |
-
)
|
179 |
-
product_results.append({
|
180 |
-
'model': copy.deepcopy(model),
|
181 |
-
'y_pred': y_pred,
|
182 |
-
'equation': equation
|
183 |
-
})
|
184 |
-
|
185 |
-
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
|
186 |
-
|
187 |
-
# Biomass Plot
|
188 |
-
axs[0].plot(time, biomass_data, 'o', label='Biomass Data')
|
189 |
-
for i, result in enumerate(biomass_results):
|
190 |
-
axs[0].plot(time, result['y_pred'], '-', label=f'Biomass Model {i+1}')
|
191 |
-
axs[0].set_xlabel('Time')
|
192 |
-
axs[0].set_ylabel('Biomass')
|
193 |
-
if show_legend:
|
194 |
-
axs[0].legend(loc=legend_position)
|
195 |
-
|
196 |
-
# Substrate Plot
|
197 |
-
axs[1].plot(time, substrate_data, 'o', label='Substrate Data')
|
198 |
-
for i, result in enumerate(substrate_results):
|
199 |
-
axs[1].plot(time, result['y_pred'], '-', label=f'Substrate Model {i+1}')
|
200 |
-
axs[1].set_xlabel('Time')
|
201 |
-
axs[1].set_ylabel('Substrate')
|
202 |
-
if show_legend:
|
203 |
-
axs[1].legend(loc=legend_position)
|
204 |
-
|
205 |
-
# Product Plot
|
206 |
-
axs[2].plot(time, product_data, 'o', label='Product Data')
|
207 |
-
for i, result in enumerate(product_results):
|
208 |
-
axs[2].plot(time, result['y_pred'], '-', label=f'Product Model {i+1}')
|
209 |
-
axs[2].set_xlabel('Time')
|
210 |
-
axs[2].set_ylabel('Product')
|
211 |
-
if show_legend:
|
212 |
-
axs[2].legend(loc=legend_position)
|
213 |
-
|
214 |
-
plt.tight_layout()
|
215 |
-
buf = io.BytesIO()
|
216 |
-
plt.savefig(buf, format='png')
|
217 |
-
buf.seek(0)
|
218 |
-
image = Image.open(buf)
|
219 |
-
|
220 |
-
all_results = {
|
221 |
-
'biomass_models': [],
|
222 |
-
'substrate_models': [],
|
223 |
-
'product_models': []
|
224 |
-
}
|
225 |
-
|
226 |
-
for i, result in enumerate(biomass_results):
|
227 |
-
model_info = {
|
228 |
-
'model_number': i + 1,
|
229 |
-
'equation': result['equation'],
|
230 |
-
'parameters': result['model'].params['biomass'],
|
231 |
-
'R2': result['model'].r2['biomass'],
|
232 |
-
'RMSE': result['model'].rmse['biomass']
|
233 |
-
}
|
234 |
-
all_results['biomass_models'].append(model_info)
|
235 |
-
|
236 |
-
for i, result in enumerate(substrate_results):
|
237 |
-
model_info = {
|
238 |
-
'model_number': i + 1,
|
239 |
-
'equation': result['equation'],
|
240 |
-
'parameters': result['model'].params['substrate'],
|
241 |
-
'R2': result['model'].r2['substrate'],
|
242 |
-
'RMSE': result['model'].rmse['substrate']
|
243 |
-
}
|
244 |
-
all_results['substrate_models'].append(model_info)
|
245 |
-
|
246 |
-
for i, result in enumerate(product_results):
|
247 |
-
model_info = {
|
248 |
-
'model_number': i + 1,
|
249 |
-
'equation': result['equation'],
|
250 |
-
'parameters': result['model'].params['product'],
|
251 |
-
'R2': result['model'].r2['product'],
|
252 |
-
'RMSE': result['model'].rmse['product']
|
253 |
-
}
|
254 |
-
all_results['product_models'].append(model_info)
|
255 |
-
|
256 |
-
results_text = "Experimental Results:\n\n"
|
257 |
-
|
258 |
-
results_text += "Biomass Models:\n"
|
259 |
-
for model_info in all_results['biomass_models']:
|
260 |
-
results_text += f"""
|
261 |
-
Model {model_info['model_number']}:
|
262 |
-
Equation: {model_info['equation']}
|
263 |
-
Parameters: {model_info['parameters']}
|
264 |
-
R²: {model_info['R2']:.4f}
|
265 |
-
RMSE: {model_info['RMSE']:.4f}
|
266 |
-
"""
|
267 |
-
|
268 |
-
results_text += "\nSubstrate Models:\n"
|
269 |
-
for model_info in all_results['substrate_models']:
|
270 |
-
results_text += f"""
|
271 |
-
Model {model_info['model_number']}:
|
272 |
-
Equation: {model_info['equation']}
|
273 |
-
Parameters: {model_info['parameters']}
|
274 |
-
R²: {model_info['R2']:.4f}
|
275 |
-
RMSE: {model_info['RMSE']:.4f}
|
276 |
-
"""
|
277 |
-
|
278 |
-
results_text += "\nProduct Models:\n"
|
279 |
-
for model_info in all_results['product_models']:
|
280 |
-
results_text += f"""
|
281 |
-
Model {model_info['model_number']}:
|
282 |
-
Equation: {model_info['equation']}
|
283 |
-
Parameters: {model_info['parameters']}
|
284 |
-
R²: {model_info['R2']:.4f}
|
285 |
-
RMSE: {model_info['RMSE']:.4f}
|
286 |
-
"""
|
287 |
-
|
288 |
-
prompt = f"""
|
289 |
-
You are an expert in bioprocess modeling.
|
290 |
-
|
291 |
-
Analyze the following experimental results and provide a verdict on the quality of the models, suggesting improvements if necessary.
|
292 |
-
|
293 |
-
{results_text}
|
294 |
-
|
295 |
-
Your analysis should be detailed and professional.
|
296 |
-
"""
|
297 |
-
analysis = generate_analysis(prompt)
|
298 |
-
|
299 |
-
return [image], analysis
|
300 |
-
|
301 |
-
def create_interface():
|
302 |
-
with gr.Blocks() as demo:
|
303 |
-
gr.Markdown("# Bioprocess Modeling Application with Yi-Coder Integration")
|
304 |
-
|
305 |
-
file_input = gr.File(label="Upload Excel File")
|
306 |
-
|
307 |
-
MAX_EQUATIONS = 3
|
308 |
-
biomass_equations = []
|
309 |
-
biomass_params = []
|
310 |
-
biomass_bounds = []
|
311 |
-
substrate_equations = []
|
312 |
-
substrate_params = []
|
313 |
-
substrate_bounds = []
|
314 |
-
product_equations = []
|
315 |
-
product_params = []
|
316 |
-
product_bounds = []
|
317 |
-
|
318 |
-
def create_model_inputs(model_name, equations_list, params_list, bounds_list):
|
319 |
-
with gr.Column():
|
320 |
-
gr.Markdown(f"### {model_name} Models")
|
321 |
-
for i in range(MAX_EQUATIONS):
|
322 |
-
with gr.Row(visible=(i == 0)) as row:
|
323 |
-
equation_input = gr.Textbox(
|
324 |
-
label=f"{model_name} Model {i+1} Equation",
|
325 |
-
placeholder="Enter equation in terms of t and parameters",
|
326 |
-
lines=1,
|
327 |
-
value="" if i > 0 else "Default equation"
|
328 |
-
)
|
329 |
-
params_input = gr.Textbox(
|
330 |
-
label=f"{model_name} Model {i+1} Parameters",
|
331 |
-
placeholder="Comma-separated parameters",
|
332 |
-
lines=1,
|
333 |
-
value="" if i > 0 else "Parameters"
|
334 |
-
)
|
335 |
-
bounds_input = gr.Textbox(
|
336 |
-
label=f"{model_name} Model {i+1} Bounds",
|
337 |
-
placeholder="(lower, upper) for each parameter",
|
338 |
-
lines=1
|
339 |
-
)
|
340 |
-
equations_list.append((row, equation_input))
|
341 |
-
params_list.append(params_input)
|
342 |
-
bounds_list.append(bounds_input)
|
343 |
-
add_btn = gr.Button(f"Add {model_name} Equation")
|
344 |
-
remove_btn = gr.Button(f"Remove {model_name} Equation")
|
345 |
-
return add_btn, remove_btn
|
346 |
-
|
347 |
-
with gr.Accordion("Model Definitions", open=True):
|
348 |
-
with gr.Row():
|
349 |
-
with gr.Column():
|
350 |
-
add_biomass_btn, remove_biomass_btn = create_model_inputs(
|
351 |
-
"Biomass", biomass_equations, biomass_params, biomass_bounds
|
352 |
-
)
|
353 |
-
with gr.Column():
|
354 |
-
add_substrate_btn, remove_substrate_btn = create_model_inputs(
|
355 |
-
"Substrate", substrate_equations, substrate_params, substrate_bounds
|
356 |
-
)
|
357 |
-
with gr.Column():
|
358 |
-
add_product_btn, remove_product_btn = create_model_inputs(
|
359 |
-
"Product", product_equations, product_params, product_bounds
|
360 |
-
)
|
361 |
-
|
362 |
-
legend_position = gr.Radio(
|
363 |
-
choices=["upper left", "upper right", "lower left", "lower right", "best"],
|
364 |
-
label="Legend Position",
|
365 |
-
value="best"
|
366 |
-
)
|
367 |
-
show_legend = gr.Checkbox(label="Show Legend", value=True)
|
368 |
-
show_params = gr.Checkbox(label="Show Parameters", value=True)
|
369 |
-
simulate_btn = gr.Button("Simulate")
|
370 |
-
|
371 |
-
with gr.Row():
|
372 |
-
output_gallery = gr.Gallery(label="Results", columns=2, height='auto')
|
373 |
-
analysis_output = gr.Textbox(label="Yi-Coder Analysis", lines=15)
|
374 |
-
|
375 |
-
biomass_eq_count = gr.Number(value=1, visible=False)
|
376 |
-
substrate_eq_count = gr.Number(value=1, visible=False)
|
377 |
-
product_eq_count = gr.Number(value=1, visible=False)
|
378 |
-
|
379 |
-
def add_equation(equations_list, eq_count):
|
380 |
-
eq_count = min(eq_count + 1, MAX_EQUATIONS)
|
381 |
-
for i, (row, _) in enumerate(equations_list):
|
382 |
-
row.visible = i < eq_count
|
383 |
-
return [row.update(visible=row.visible) for row, _ in equations_list], eq_count
|
384 |
-
|
385 |
-
def remove_equation(equations_list, eq_count):
|
386 |
-
eq_count = max(eq_count - 1, 1)
|
387 |
-
for i, (row, _) in enumerate(equations_list):
|
388 |
-
row.visible = i < eq_count
|
389 |
-
return [row.update(visible=row.visible) for row, _ in equations_list], eq_count
|
390 |
-
|
391 |
-
add_biomass_btn.click(
|
392 |
-
fn=lambda eq_count: add_equation(biomass_equations, eq_count),
|
393 |
-
inputs=biomass_eq_count,
|
394 |
-
outputs=[*[row for row, _ in biomass_equations], biomass_eq_count]
|
395 |
-
)
|
396 |
-
remove_biomass_btn.click(
|
397 |
-
fn=lambda eq_count: remove_equation(biomass_equations, eq_count),
|
398 |
-
inputs=biomass_eq_count,
|
399 |
-
outputs=[*[row for row, _ in biomass_equations], biomass_eq_count]
|
400 |
-
)
|
401 |
-
|
402 |
-
add_substrate_btn.click(
|
403 |
-
fn=lambda eq_count: add_equation(substrate_equations, eq_count),
|
404 |
-
inputs=substrate_eq_count,
|
405 |
-
outputs=[*[row for row, _ in substrate_equations], substrate_eq_count]
|
406 |
-
)
|
407 |
-
remove_substrate_btn.click(
|
408 |
-
fn=lambda eq_count: remove_equation(substrate_equations, eq_count),
|
409 |
-
inputs=substrate_eq_count,
|
410 |
-
outputs=[*[row for row, _ in substrate_equations], substrate_eq_count]
|
411 |
-
)
|
412 |
-
|
413 |
-
add_product_btn.click(
|
414 |
-
fn=lambda eq_count: add_equation(product_equations, eq_count),
|
415 |
-
inputs=product_eq_count,
|
416 |
-
outputs=[*[row for row, _ in product_equations], product_eq_count]
|
417 |
-
)
|
418 |
-
remove_product_btn.click(
|
419 |
-
fn=lambda eq_count: remove_equation(product_equations, eq_count),
|
420 |
-
inputs=product_eq_count,
|
421 |
-
outputs=[*[row for row, _ in product_equations], product_eq_count]
|
422 |
-
)
|
423 |
-
|
424 |
-
simulate_inputs = [
|
425 |
-
file_input,
|
426 |
-
*[eq_input for row, eq_input in biomass_equations],
|
427 |
-
*biomass_params,
|
428 |
-
*biomass_bounds,
|
429 |
-
*[eq_input for row, eq_input in substrate_equations],
|
430 |
-
*substrate_params,
|
431 |
-
*substrate_bounds,
|
432 |
-
*[eq_input for row, eq_input in product_equations],
|
433 |
-
*product_params,
|
434 |
-
*product_bounds,
|
435 |
-
legend_position,
|
436 |
-
show_legend,
|
437 |
-
show_params,
|
438 |
-
biomass_eq_count,
|
439 |
-
substrate_eq_count,
|
440 |
-
product_eq_count
|
441 |
-
]
|
442 |
-
|
443 |
-
simulate_btn.click(
|
444 |
-
fn=process_and_plot,
|
445 |
-
inputs=simulate_inputs,
|
446 |
-
outputs=[output_gallery, analysis_output]
|
447 |
-
)
|
448 |
|
449 |
-
|
|
|
450 |
|
|
|
451 |
if __name__ == "__main__":
|
452 |
demo = create_interface()
|
453 |
demo.launch()
|
|
|
12 |
from sympy import symbols, sympify, lambdify
|
13 |
import copy
|
14 |
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
|
|
|
15 |
|
16 |
+
# Configuración del dispositivo
|
17 |
device = DEVICE
|
18 |
+
|
19 |
+
# Cargar el modelo
|
20 |
+
model_path = MODEL_PATH # Reemplaza con la ruta real de tu modelo
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
23 |
+
model.to(device)
|
24 |
+
model.eval()
|
25 |
|
26 |
+
@torch.no_grad()
|
27 |
def generate_analysis(prompt, max_length=MAX_LENGTH):
|
28 |
try:
|
29 |
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
30 |
+
max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)
|
31 |
+
|
32 |
generated_ids = model.generate(
|
33 |
input_ids=input_ids,
|
34 |
+
max_length=max_gen_length,
|
35 |
temperature=TEMPERATURE,
|
36 |
num_return_sequences=1,
|
37 |
no_repeat_ngram_size=2,
|
38 |
early_stopping=True
|
39 |
)
|
40 |
+
|
41 |
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
42 |
analysis = output_text[len(prompt):].strip()
|
43 |
return analysis
|
44 |
except Exception as e:
|
45 |
+
return f"Ocurrió un error durante el análisis: {e}"
|
46 |
|
47 |
def parse_bounds(bounds_str, num_params):
|
48 |
try:
|
|
|
57 |
upper_bounds = [np.inf] * num_params
|
58 |
return lower_bounds, upper_bounds
|
59 |
|
60 |
+
# Aquí incluye la función process_and_plot completa, asegurándote de que no haya referencias a decorators o @spaces.GPU
|
61 |
+
|
62 |
def process_and_plot(
|
63 |
file,
|
64 |
+
# Lista completa de parámetros según tu código
|
65 |
+
# Asegúrate de que coincida con los inputs en UI.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
):
|
67 |
+
# Implementación de la función process_and_plot
|
68 |
+
# Procesa los datos, ajusta los modelos, genera las gráficas y el análisis
|
69 |
+
pass # Reemplaza con tu implementación
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# Importar la función create_interface desde UI.py
|
72 |
+
from UI import create_interface
|
73 |
|
74 |
+
# Si deseas ejecutar la interfaz desde este archivo, asegúrate de que este bloque no cause conflictos al importar
|
75 |
if __name__ == "__main__":
|
76 |
demo = create_interface()
|
77 |
demo.launch()
|