Update interface.py
Browse files- interface.py +389 -13
interface.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
# interface.py
|
2 |
|
3 |
-
|
4 |
from models import BioprocessModel
|
5 |
import io
|
6 |
from PIL import Image
|
@@ -9,6 +9,7 @@ import numpy as np
|
|
9 |
import matplotlib.pyplot as plt
|
10 |
import torch
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
12 |
import copy
|
13 |
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
|
14 |
|
@@ -49,15 +50,15 @@ def parse_bounds(bounds_str, num_params):
|
|
49 |
|
50 |
def process_and_plot(
|
51 |
file,
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
legend_position,
|
62 |
show_legend,
|
63 |
show_params,
|
@@ -65,10 +66,385 @@ def process_and_plot(
|
|
65 |
substrate_eq_count,
|
66 |
product_eq_count
|
67 |
):
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
return [image], analysis
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
if __name__ == "__main__":
|
73 |
-
demo = create_interface(
|
74 |
demo.launch()
|
|
|
1 |
# interface.py
|
2 |
|
3 |
+
import gradio as gr
|
4 |
from models import BioprocessModel
|
5 |
import io
|
6 |
from PIL import Image
|
|
|
9 |
import matplotlib.pyplot as plt
|
10 |
import torch
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
+
from sympy import symbols, sympify, lambdify
|
13 |
import copy
|
14 |
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
|
15 |
|
|
|
50 |
|
51 |
def process_and_plot(
|
52 |
file,
|
53 |
+
biomass_eq1, biomass_eq2, biomass_eq3,
|
54 |
+
biomass_param1, biomass_param2, biomass_param3,
|
55 |
+
biomass_bound1, biomass_bound2, biomass_bound3,
|
56 |
+
substrate_eq1, substrate_eq2, substrate_eq3,
|
57 |
+
substrate_param1, substrate_param2, substrate_param3,
|
58 |
+
substrate_bound1, substrate_bound2, substrate_bound3,
|
59 |
+
product_eq1, product_eq2, product_eq3,
|
60 |
+
product_param1, product_param2, product_param3,
|
61 |
+
product_bound1, product_bound2, product_bound3,
|
62 |
legend_position,
|
63 |
show_legend,
|
64 |
show_params,
|
|
|
66 |
substrate_eq_count,
|
67 |
product_eq_count
|
68 |
):
|
69 |
+
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
|
70 |
+
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
|
71 |
+
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
|
72 |
+
|
73 |
+
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
|
74 |
+
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
|
75 |
+
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
|
76 |
+
|
77 |
+
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
|
78 |
+
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
|
79 |
+
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
|
80 |
+
|
81 |
+
df = pd.read_excel(file.name)
|
82 |
+
time = df['Time'].values
|
83 |
+
biomass_data = df['Biomass'].values
|
84 |
+
substrate_data = df['Substrate'].values
|
85 |
+
product_data = df['Product'].values
|
86 |
+
|
87 |
+
biomass_results = []
|
88 |
+
substrate_results = []
|
89 |
+
product_results = []
|
90 |
+
|
91 |
+
for i in range(len(biomass_eqs)):
|
92 |
+
equation = biomass_eqs[i]
|
93 |
+
params_str = biomass_params[i]
|
94 |
+
bounds_str = biomass_bounds[i]
|
95 |
+
|
96 |
+
model = BioprocessModel()
|
97 |
+
model.set_model('biomass', equation, params_str)
|
98 |
+
|
99 |
+
params = [param.strip() for param in params_str.split(',')]
|
100 |
+
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
101 |
+
|
102 |
+
y_pred = model.fit_model(
|
103 |
+
'biomass', time, biomass_data,
|
104 |
+
bounds=(lower_bounds, upper_bounds)
|
105 |
+
)
|
106 |
+
biomass_results.append({
|
107 |
+
'model': copy.deepcopy(model),
|
108 |
+
'y_pred': y_pred,
|
109 |
+
'equation': equation
|
110 |
+
})
|
111 |
+
|
112 |
+
biomass_model = biomass_results[0]['model']
|
113 |
+
X_t = biomass_model.models['biomass']['function']
|
114 |
+
biomass_params_values = list(biomass_model.params['biomass'].values())
|
115 |
+
|
116 |
+
for i in range(len(substrate_eqs)):
|
117 |
+
equation = substrate_eqs[i]
|
118 |
+
params_str = substrate_params[i]
|
119 |
+
bounds_str = substrate_bounds[i]
|
120 |
+
|
121 |
+
model = BioprocessModel()
|
122 |
+
|
123 |
+
t_symbol = symbols('t')
|
124 |
+
expr_substrate = sympify(equation)
|
125 |
+
substrate_params_symbols = symbols([param.strip() for param in params_str.split(',')])
|
126 |
+
substrate_func = lambdify(
|
127 |
+
(t_symbol, *substrate_params_symbols),
|
128 |
+
expr_substrate.subs('X(t)', X_t(t_symbol, *biomass_params_values)),
|
129 |
+
'numpy'
|
130 |
+
)
|
131 |
+
model.models['substrate'] = {
|
132 |
+
'function': substrate_func,
|
133 |
+
'params': [param.strip() for param in params_str.split(',')]
|
134 |
+
}
|
135 |
+
|
136 |
+
params = model.models['substrate']['params']
|
137 |
+
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
138 |
+
|
139 |
+
y_pred = model.fit_model(
|
140 |
+
'substrate', time, substrate_data,
|
141 |
+
bounds=(lower_bounds, upper_bounds)
|
142 |
+
)
|
143 |
+
substrate_results.append({
|
144 |
+
'model': copy.deepcopy(model),
|
145 |
+
'y_pred': y_pred,
|
146 |
+
'equation': equation
|
147 |
+
})
|
148 |
+
|
149 |
+
for i in range(len(product_eqs)):
|
150 |
+
equation = product_eqs[i]
|
151 |
+
params_str = product_params[i]
|
152 |
+
bounds_str = product_bounds[i]
|
153 |
+
|
154 |
+
model = BioprocessModel()
|
155 |
+
|
156 |
+
t_symbol = symbols('t')
|
157 |
+
expr_product = sympify(equation)
|
158 |
+
product_params_symbols = symbols([param.strip() for param in params_str.split(',')])
|
159 |
+
product_func = lambdify(
|
160 |
+
(t_symbol, *product_params_symbols),
|
161 |
+
expr_product.subs('X(t)', X_t(t_symbol, *biomass_params_values)),
|
162 |
+
'numpy'
|
163 |
+
)
|
164 |
+
model.models['product'] = {
|
165 |
+
'function': product_func,
|
166 |
+
'params': [param.strip() for param in params_str.split(',')]
|
167 |
+
}
|
168 |
+
|
169 |
+
params = model.models['product']['params']
|
170 |
+
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
171 |
+
|
172 |
+
y_pred = model.fit_model(
|
173 |
+
'product', time, product_data,
|
174 |
+
bounds=(lower_bounds, upper_bounds)
|
175 |
+
)
|
176 |
+
product_results.append({
|
177 |
+
'model': copy.deepcopy(model),
|
178 |
+
'y_pred': y_pred,
|
179 |
+
'equation': equation
|
180 |
+
})
|
181 |
+
|
182 |
+
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
|
183 |
+
|
184 |
+
# Biomass Plot
|
185 |
+
axs[0].plot(time, biomass_data, 'o', label='Biomass Data')
|
186 |
+
for i, result in enumerate(biomass_results):
|
187 |
+
axs[0].plot(time, result['y_pred'], '-', label=f'Biomass Model {i+1}')
|
188 |
+
axs[0].set_xlabel('Time')
|
189 |
+
axs[0].set_ylabel('Biomass')
|
190 |
+
if show_legend:
|
191 |
+
axs[0].legend(loc=legend_position)
|
192 |
+
|
193 |
+
# Substrate Plot
|
194 |
+
axs[1].plot(time, substrate_data, 'o', label='Substrate Data')
|
195 |
+
for i, result in enumerate(substrate_results):
|
196 |
+
axs[1].plot(time, result['y_pred'], '-', label=f'Substrate Model {i+1}')
|
197 |
+
axs[1].set_xlabel('Time')
|
198 |
+
axs[1].set_ylabel('Substrate')
|
199 |
+
if show_legend:
|
200 |
+
axs[1].legend(loc=legend_position)
|
201 |
+
|
202 |
+
# Product Plot
|
203 |
+
axs[2].plot(time, product_data, 'o', label='Product Data')
|
204 |
+
for i, result in enumerate(product_results):
|
205 |
+
axs[2].plot(time, result['y_pred'], '-', label=f'Product Model {i+1}')
|
206 |
+
axs[2].set_xlabel('Time')
|
207 |
+
axs[2].set_ylabel('Product')
|
208 |
+
if show_legend:
|
209 |
+
axs[2].legend(loc=legend_position)
|
210 |
+
|
211 |
+
plt.tight_layout()
|
212 |
+
buf = io.BytesIO()
|
213 |
+
plt.savefig(buf, format='png')
|
214 |
+
buf.seek(0)
|
215 |
+
image = Image.open(buf)
|
216 |
+
|
217 |
+
all_results = {
|
218 |
+
'biomass_models': [],
|
219 |
+
'substrate_models': [],
|
220 |
+
'product_models': []
|
221 |
+
}
|
222 |
+
|
223 |
+
for i, result in enumerate(biomass_results):
|
224 |
+
model_info = {
|
225 |
+
'model_number': i + 1,
|
226 |
+
'equation': result['equation'],
|
227 |
+
'parameters': result['model'].params['biomass'],
|
228 |
+
'R2': result['model'].r2['biomass'],
|
229 |
+
'RMSE': result['model'].rmse['biomass']
|
230 |
+
}
|
231 |
+
all_results['biomass_models'].append(model_info)
|
232 |
+
|
233 |
+
for i, result in enumerate(substrate_results):
|
234 |
+
model_info = {
|
235 |
+
'model_number': i + 1,
|
236 |
+
'equation': result['equation'],
|
237 |
+
'parameters': result['model'].params['substrate'],
|
238 |
+
'R2': result['model'].r2['substrate'],
|
239 |
+
'RMSE': result['model'].rmse['substrate']
|
240 |
+
}
|
241 |
+
all_results['substrate_models'].append(model_info)
|
242 |
+
|
243 |
+
for i, result in enumerate(product_results):
|
244 |
+
model_info = {
|
245 |
+
'model_number': i + 1,
|
246 |
+
'equation': result['equation'],
|
247 |
+
'parameters': result['model'].params['product'],
|
248 |
+
'R2': result['model'].r2['product'],
|
249 |
+
'RMSE': result['model'].rmse['product']
|
250 |
+
}
|
251 |
+
all_results['product_models'].append(model_info)
|
252 |
+
|
253 |
+
results_text = "Experimental Results:\n\n"
|
254 |
+
|
255 |
+
results_text += "Biomass Models:\n"
|
256 |
+
for model_info in all_results['biomass_models']:
|
257 |
+
results_text += f"""
|
258 |
+
Model {model_info['model_number']}:
|
259 |
+
Equation: {model_info['equation']}
|
260 |
+
Parameters: {model_info['parameters']}
|
261 |
+
R²: {model_info['R2']:.4f}
|
262 |
+
RMSE: {model_info['RMSE']:.4f}
|
263 |
+
"""
|
264 |
+
|
265 |
+
results_text += "\nSubstrate Models:\n"
|
266 |
+
for model_info in all_results['substrate_models']:
|
267 |
+
results_text += f"""
|
268 |
+
Model {model_info['model_number']}:
|
269 |
+
Equation: {model_info['equation']}
|
270 |
+
Parameters: {model_info['parameters']}
|
271 |
+
R²: {model_info['R2']:.4f}
|
272 |
+
RMSE: {model_info['RMSE']:.4f}
|
273 |
+
"""
|
274 |
+
|
275 |
+
results_text += "\nProduct Models:\n"
|
276 |
+
for model_info in all_results['product_models']:
|
277 |
+
results_text += f"""
|
278 |
+
Model {model_info['model_number']}:
|
279 |
+
Equation: {model_info['equation']}
|
280 |
+
Parameters: {model_info['parameters']}
|
281 |
+
R²: {model_info['R2']:.4f}
|
282 |
+
RMSE: {model_info['RMSE']:.4f}
|
283 |
+
"""
|
284 |
+
|
285 |
+
prompt = f"""
|
286 |
+
You are an expert in bioprocess modeling.
|
287 |
+
|
288 |
+
Analyze the following experimental results and provide a verdict on the quality of the models, suggesting improvements if necessary.
|
289 |
+
|
290 |
+
{results_text}
|
291 |
+
|
292 |
+
Your analysis should be detailed and professional.
|
293 |
+
"""
|
294 |
+
analysis = generate_analysis(prompt)
|
295 |
+
|
296 |
return [image], analysis
|
297 |
|
298 |
+
def create_interface():
|
299 |
+
with gr.Blocks() as demo:
|
300 |
+
gr.Markdown("# Bioprocess Modeling Application with Yi-Coder Integration")
|
301 |
+
|
302 |
+
file_input = gr.File(label="Upload Excel File")
|
303 |
+
|
304 |
+
MAX_EQUATIONS = 3
|
305 |
+
biomass_equations = []
|
306 |
+
biomass_params = []
|
307 |
+
biomass_bounds = []
|
308 |
+
substrate_equations = []
|
309 |
+
substrate_params = []
|
310 |
+
substrate_bounds = []
|
311 |
+
product_equations = []
|
312 |
+
product_params = []
|
313 |
+
product_bounds = []
|
314 |
+
|
315 |
+
def create_model_inputs(model_name, equations_list, params_list, bounds_list):
|
316 |
+
with gr.Column():
|
317 |
+
gr.Markdown(f"### {model_name} Models")
|
318 |
+
for i in range(MAX_EQUATIONS):
|
319 |
+
with gr.Row(visible=(i == 0)) as row:
|
320 |
+
equation_input = gr.Textbox(
|
321 |
+
label=f"{model_name} Model {i+1} Equation",
|
322 |
+
placeholder="Enter equation in terms of t and parameters",
|
323 |
+
lines=1,
|
324 |
+
value="" if i > 0 else "Default equation"
|
325 |
+
)
|
326 |
+
params_input = gr.Textbox(
|
327 |
+
label=f"{model_name} Model {i+1} Parameters",
|
328 |
+
placeholder="Comma-separated parameters",
|
329 |
+
lines=1,
|
330 |
+
value="" if i > 0 else "Parameters"
|
331 |
+
)
|
332 |
+
bounds_input = gr.Textbox(
|
333 |
+
label=f"{model_name} Model {i+1} Bounds",
|
334 |
+
placeholder="(lower, upper) for each parameter",
|
335 |
+
lines=1
|
336 |
+
)
|
337 |
+
equations_list.append((row, equation_input))
|
338 |
+
params_list.append(params_input)
|
339 |
+
bounds_list.append(bounds_input)
|
340 |
+
add_btn = gr.Button(f"Add {model_name} Equation")
|
341 |
+
remove_btn = gr.Button(f"Remove {model_name} Equation")
|
342 |
+
return add_btn, remove_btn
|
343 |
+
|
344 |
+
with gr.Accordion("Model Definitions", open=True):
|
345 |
+
with gr.Row():
|
346 |
+
with gr.Column():
|
347 |
+
add_biomass_btn, remove_biomass_btn = create_model_inputs(
|
348 |
+
"Biomass", biomass_equations, biomass_params, biomass_bounds
|
349 |
+
)
|
350 |
+
with gr.Column():
|
351 |
+
add_substrate_btn, remove_substrate_btn = create_model_inputs(
|
352 |
+
"Substrate", substrate_equations, substrate_params, substrate_bounds
|
353 |
+
)
|
354 |
+
with gr.Column():
|
355 |
+
add_product_btn, remove_product_btn = create_model_inputs(
|
356 |
+
"Product", product_equations, product_params, product_bounds
|
357 |
+
)
|
358 |
+
|
359 |
+
legend_position = gr.Radio(
|
360 |
+
choices=["upper left", "upper right", "lower left", "lower right", "best"],
|
361 |
+
label="Legend Position",
|
362 |
+
value="best"
|
363 |
+
)
|
364 |
+
show_legend = gr.Checkbox(label="Show Legend", value=True)
|
365 |
+
show_params = gr.Checkbox(label="Show Parameters", value=True)
|
366 |
+
simulate_btn = gr.Button("Simulate")
|
367 |
+
|
368 |
+
with gr.Row():
|
369 |
+
output_gallery = gr.Gallery(label="Results", columns=2, height='auto')
|
370 |
+
analysis_output = gr.Textbox(label="Yi-Coder Analysis", lines=15)
|
371 |
+
|
372 |
+
biomass_eq_count = gr.Number(value=1, visible=False)
|
373 |
+
substrate_eq_count = gr.Number(value=1, visible=False)
|
374 |
+
product_eq_count = gr.Number(value=1, visible=False)
|
375 |
+
|
376 |
+
def add_equation(equations_list, eq_count):
|
377 |
+
eq_count = min(eq_count + 1, MAX_EQUATIONS)
|
378 |
+
for i, (row, _) in enumerate(equations_list):
|
379 |
+
row.visible = i < eq_count
|
380 |
+
return [row.update(visible=row.visible) for row, _ in equations_list], eq_count
|
381 |
+
|
382 |
+
def remove_equation(equations_list, eq_count):
|
383 |
+
eq_count = max(eq_count - 1, 1)
|
384 |
+
for i, (row, _) in enumerate(equations_list):
|
385 |
+
row.visible = i < eq_count
|
386 |
+
return [row.update(visible=row.visible) for row, _ in equations_list], eq_count
|
387 |
+
|
388 |
+
add_biomass_btn.click(
|
389 |
+
fn=lambda eq_count: add_equation(biomass_equations, eq_count),
|
390 |
+
inputs=biomass_eq_count,
|
391 |
+
outputs=[*[row for row, _ in biomass_equations], biomass_eq_count]
|
392 |
+
)
|
393 |
+
remove_biomass_btn.click(
|
394 |
+
fn=lambda eq_count: remove_equation(biomass_equations, eq_count),
|
395 |
+
inputs=biomass_eq_count,
|
396 |
+
outputs=[*[row for row, _ in biomass_equations], biomass_eq_count]
|
397 |
+
)
|
398 |
+
|
399 |
+
add_substrate_btn.click(
|
400 |
+
fn=lambda eq_count: add_equation(substrate_equations, eq_count),
|
401 |
+
inputs=substrate_eq_count,
|
402 |
+
outputs=[*[row for row, _ in substrate_equations], substrate_eq_count]
|
403 |
+
)
|
404 |
+
remove_substrate_btn.click(
|
405 |
+
fn=lambda eq_count: remove_equation(substrate_equations, eq_count),
|
406 |
+
inputs=substrate_eq_count,
|
407 |
+
outputs=[*[row for row, _ in substrate_equations], substrate_eq_count]
|
408 |
+
)
|
409 |
+
|
410 |
+
add_product_btn.click(
|
411 |
+
fn=lambda eq_count: add_equation(product_equations, eq_count),
|
412 |
+
inputs=product_eq_count,
|
413 |
+
outputs=[*[row for row, _ in product_equations], product_eq_count]
|
414 |
+
)
|
415 |
+
remove_product_btn.click(
|
416 |
+
fn=lambda eq_count: remove_equation(product_equations, eq_count),
|
417 |
+
inputs=product_eq_count,
|
418 |
+
outputs=[*[row for row, _ in product_equations], product_eq_count]
|
419 |
+
)
|
420 |
+
|
421 |
+
simulate_inputs = [
|
422 |
+
file_input,
|
423 |
+
*[eq_input for row, eq_input in biomass_equations],
|
424 |
+
*biomass_params,
|
425 |
+
*biomass_bounds,
|
426 |
+
*[eq_input for row, eq_input in substrate_equations],
|
427 |
+
*substrate_params,
|
428 |
+
*substrate_bounds,
|
429 |
+
*[eq_input for row, eq_input in product_equations],
|
430 |
+
*product_params,
|
431 |
+
*product_bounds,
|
432 |
+
legend_position,
|
433 |
+
show_legend,
|
434 |
+
show_params,
|
435 |
+
biomass_eq_count,
|
436 |
+
substrate_eq_count,
|
437 |
+
product_eq_count
|
438 |
+
]
|
439 |
+
|
440 |
+
simulate_btn.click(
|
441 |
+
fn=process_and_plot,
|
442 |
+
inputs=simulate_inputs,
|
443 |
+
outputs=[output_gallery, analysis_output]
|
444 |
+
)
|
445 |
+
|
446 |
+
return demo
|
447 |
+
|
448 |
if __name__ == "__main__":
|
449 |
+
demo = create_interface()
|
450 |
demo.launch()
|