C2MV commited on
Commit
6c9fc9b
·
verified ·
1 Parent(s): f3f77c0

Create models.py

Browse files
Files changed (1) hide show
  1. models.py +57 -0
models.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # models.py
2
+
3
+ import numpy as np
4
+ from scipy.optimize import curve_fit
5
+ from sympy import symbols, sympify, lambdify
6
+ import warnings
7
+
8
+ class BioprocessModel:
9
+ def __init__(self):
10
+ self.params = {}
11
+ self.models = {}
12
+ self.r2 = {}
13
+ self.rmse = {}
14
+
15
+ def set_model(self, model_type, equation_str, param_str):
16
+ equation_str = equation_str.strip()
17
+ if '=' in equation_str:
18
+ equation_str = equation_str.split('=', 1)[1].strip()
19
+
20
+ params = [param.strip() for param in param_str.split(',')]
21
+ self.models[model_type] = {
22
+ 'equation_str': equation_str,
23
+ 'params': params
24
+ }
25
+
26
+ t = symbols('t')
27
+ param_symbols = symbols(params)
28
+ expr = sympify(equation_str)
29
+ func = lambdify((t, *param_symbols), expr, 'numpy')
30
+ self.models[model_type]['function'] = func
31
+
32
+ def fit_model(self, model_type, time, data, bounds):
33
+ func = self.models[model_type]['function']
34
+ params = self.models[model_type]['params']
35
+
36
+ p0 = np.ones(len(params))
37
+ lower_bounds, upper_bounds = bounds
38
+
39
+ lower_bounds = np.array(lower_bounds)
40
+ upper_bounds = np.array(upper_bounds)
41
+
42
+ if len(lower_bounds) != len(params):
43
+ lower_bounds = np.full(len(params), -np.inf)
44
+ if len(upper_bounds) != len(params):
45
+ upper_bounds = np.full(len(params), np.inf)
46
+
47
+ with warnings.catch_warnings():
48
+ warnings.simplefilter("ignore")
49
+ popt, _ = curve_fit(func, time, data, p0=p0, bounds=(lower_bounds, upper_bounds), maxfev=10000)
50
+
51
+ self.params[model_type] = dict(zip(params, popt))
52
+ y_pred = func(time, *popt)
53
+ ss_res = np.sum((data - y_pred) ** 2)
54
+ ss_tot = np.sum((data - np.mean(data)) ** 2)
55
+ self.r2[model_type] = 1 - (ss_res / ss_tot)
56
+ self.rmse[model_type] = np.sqrt(np.mean((data - y_pred) ** 2))
57
+ return y_pred