Update interface.py
Browse files- interface.py +256 -12
interface.py
CHANGED
@@ -56,19 +56,263 @@ def parse_bounds(bounds_str, num_params):
|
|
56 |
upper_bounds = [np.inf] * num_params
|
57 |
return lower_bounds, upper_bounds
|
58 |
|
59 |
-
# Aquí incluye la función process_and_plot completa, asegurándote de que no haya referencias a decorators o @spaces.GPU
|
60 |
-
|
61 |
def process_and_plot(
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
):
|
64 |
-
#
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
upper_bounds = [np.inf] * num_params
|
57 |
return lower_bounds, upper_bounds
|
58 |
|
|
|
|
|
59 |
def process_and_plot(
|
60 |
+
file,
|
61 |
+
biomass_eq1, biomass_eq2, biomass_eq3,
|
62 |
+
biomass_param1, biomass_param2, biomass_param3,
|
63 |
+
biomass_bound1, biomass_bound2, biomass_bound3,
|
64 |
+
substrate_eq1, substrate_eq2, substrate_eq3,
|
65 |
+
substrate_param1, substrate_param2, substrate_param3,
|
66 |
+
substrate_bound1, substrate_bound2, substrate_bound3,
|
67 |
+
product_eq1, product_eq2, product_eq3,
|
68 |
+
product_param1, product_param2, product_param3,
|
69 |
+
product_bound1, product_bound2, product_bound3,
|
70 |
+
legend_position,
|
71 |
+
show_legend,
|
72 |
+
show_params,
|
73 |
+
biomass_eq_count,
|
74 |
+
substrate_eq_count,
|
75 |
+
product_eq_count
|
76 |
):
|
77 |
+
# Convierte los contadores a enteros
|
78 |
+
biomass_eq_count = int(biomass_eq_count)
|
79 |
+
substrate_eq_count = int(substrate_eq_count)
|
80 |
+
product_eq_count = int(product_eq_count)
|
81 |
+
|
82 |
+
# Recolecta las ecuaciones, parámetros y límites según los contadores
|
83 |
+
biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
|
84 |
+
biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
|
85 |
+
biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
|
86 |
+
|
87 |
+
substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
|
88 |
+
substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
|
89 |
+
substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
|
90 |
+
|
91 |
+
product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
|
92 |
+
product_params = [product_param1, product_param2, product_param3][:product_eq_count]
|
93 |
+
product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
|
94 |
+
|
95 |
+
# Lee el archivo Excel subido
|
96 |
+
df = pd.read_excel(file.name)
|
97 |
+
time = df['Time'].values
|
98 |
+
biomass_data = df['Biomass'].values
|
99 |
+
substrate_data = df['Substrate'].values
|
100 |
+
product_data = df['Product'].values
|
101 |
+
|
102 |
+
biomass_results = []
|
103 |
+
substrate_results = []
|
104 |
+
product_results = []
|
105 |
+
|
106 |
+
# Ajusta los modelos de Biomasa
|
107 |
+
for i in range(len(biomass_eqs)):
|
108 |
+
equation = biomass_eqs[i]
|
109 |
+
params_str = biomass_params[i]
|
110 |
+
bounds_str = biomass_bounds[i]
|
111 |
+
|
112 |
+
model = BioprocessModel()
|
113 |
+
model.set_model('biomass', equation, params_str)
|
114 |
+
|
115 |
+
params = [param.strip() for param in params_str.split(',')]
|
116 |
+
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
117 |
+
|
118 |
+
y_pred = model.fit_model(
|
119 |
+
'biomass', time, biomass_data,
|
120 |
+
bounds=(lower_bounds, upper_bounds)
|
121 |
+
)
|
122 |
+
biomass_results.append({
|
123 |
+
'model': copy.deepcopy(model),
|
124 |
+
'y_pred': y_pred,
|
125 |
+
'equation': equation
|
126 |
+
})
|
127 |
+
|
128 |
+
# Usa el primer modelo de biomasa para X(t)
|
129 |
+
biomass_model = biomass_results[0]['model']
|
130 |
+
X_t_func = biomass_model.models['biomass']['function']
|
131 |
+
biomass_params_values = list(biomass_model.params['biomass'].values())
|
132 |
+
|
133 |
+
# Ajusta los modelos de Sustrato
|
134 |
+
for i in range(len(substrate_eqs)):
|
135 |
+
equation = substrate_eqs[i]
|
136 |
+
params_str = substrate_params[i]
|
137 |
+
bounds_str = substrate_bounds[i]
|
138 |
+
|
139 |
+
model = BioprocessModel()
|
140 |
+
|
141 |
+
t_symbol = symbols('t')
|
142 |
+
expr_substrate = sympify(equation)
|
143 |
+
substrate_params_symbols = symbols([param.strip() for param in params_str.split(',')])
|
144 |
+
substrate_func_expr = expr_substrate.subs('X(t)', X_t_func(t_symbol, *biomass_params_values))
|
145 |
+
substrate_func = lambdify(
|
146 |
+
(t_symbol, *substrate_params_symbols),
|
147 |
+
substrate_func_expr,
|
148 |
+
'numpy'
|
149 |
+
)
|
150 |
+
model.models['substrate'] = {
|
151 |
+
'function': substrate_func,
|
152 |
+
'params': [param.strip() for param in params_str.split(',')]
|
153 |
+
}
|
154 |
+
|
155 |
+
params = model.models['substrate']['params']
|
156 |
+
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
157 |
+
|
158 |
+
y_pred = model.fit_model(
|
159 |
+
'substrate', time, substrate_data,
|
160 |
+
bounds=(lower_bounds, upper_bounds)
|
161 |
+
)
|
162 |
+
substrate_results.append({
|
163 |
+
'model': copy.deepcopy(model),
|
164 |
+
'y_pred': y_pred,
|
165 |
+
'equation': equation
|
166 |
+
})
|
167 |
+
|
168 |
+
# Ajusta los modelos de Producto
|
169 |
+
for i in range(len(product_eqs)):
|
170 |
+
equation = product_eqs[i]
|
171 |
+
params_str = product_params[i]
|
172 |
+
bounds_str = product_bounds[i]
|
173 |
+
|
174 |
+
model = BioprocessModel()
|
175 |
|
176 |
+
t_symbol = symbols('t')
|
177 |
+
expr_product = sympify(equation)
|
178 |
+
product_params_symbols = symbols([param.strip() for param in params_str.split(',')])
|
179 |
+
product_func_expr = expr_product.subs('X(t)', X_t_func(t_symbol, *biomass_params_values))
|
180 |
+
product_func = lambdify(
|
181 |
+
(t_symbol, *product_params_symbols),
|
182 |
+
product_func_expr,
|
183 |
+
'numpy'
|
184 |
+
)
|
185 |
+
model.models['product'] = {
|
186 |
+
'function': product_func,
|
187 |
+
'params': [param.strip() for param in params_str.split(',')]
|
188 |
+
}
|
189 |
+
|
190 |
+
params = model.models['product']['params']
|
191 |
+
lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
|
192 |
+
|
193 |
+
y_pred = model.fit_model(
|
194 |
+
'product', time, product_data,
|
195 |
+
bounds=(lower_bounds, upper_bounds)
|
196 |
+
)
|
197 |
+
product_results.append({
|
198 |
+
'model': copy.deepcopy(model),
|
199 |
+
'y_pred': y_pred,
|
200 |
+
'equation': equation
|
201 |
+
})
|
202 |
+
|
203 |
+
# Genera las gráficas
|
204 |
+
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
|
205 |
+
|
206 |
+
# Gráfica de Biomasa
|
207 |
+
axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
|
208 |
+
for i, result in enumerate(biomass_results):
|
209 |
+
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
|
210 |
+
axs[0].set_xlabel('Tiempo')
|
211 |
+
axs[0].set_ylabel('Biomasa')
|
212 |
+
if show_legend:
|
213 |
+
axs[0].legend(loc=legend_position)
|
214 |
+
|
215 |
+
# Gráfica de Sustrato
|
216 |
+
axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
|
217 |
+
for i, result in enumerate(substrate_results):
|
218 |
+
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
|
219 |
+
axs[1].set_xlabel('Tiempo')
|
220 |
+
axs[1].set_ylabel('Sustrato')
|
221 |
+
if show_legend:
|
222 |
+
axs[1].legend(loc=legend_position)
|
223 |
+
|
224 |
+
# Gráfica de Producto
|
225 |
+
axs[2].plot(time, product_data, 'o', label='Datos de Producto')
|
226 |
+
for i, result in enumerate(product_results):
|
227 |
+
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
|
228 |
+
axs[2].set_xlabel('Tiempo')
|
229 |
+
axs[2].set_ylabel('Producto')
|
230 |
+
if show_legend:
|
231 |
+
axs[2].legend(loc=legend_position)
|
232 |
+
|
233 |
+
plt.tight_layout()
|
234 |
+
buf = io.BytesIO()
|
235 |
+
plt.savefig(buf, format='png')
|
236 |
+
buf.seek(0)
|
237 |
+
image = Image.open(buf)
|
238 |
+
|
239 |
+
all_results = {
|
240 |
+
'biomass_models': [],
|
241 |
+
'substrate_models': [],
|
242 |
+
'product_models': []
|
243 |
+
}
|
244 |
+
|
245 |
+
for i, result in enumerate(biomass_results):
|
246 |
+
model_info = {
|
247 |
+
'model_number': i + 1,
|
248 |
+
'equation': result['equation'],
|
249 |
+
'parameters': result['model'].params['biomass'],
|
250 |
+
'R2': result['model'].r2['biomass'],
|
251 |
+
'RMSE': result['model'].rmse['biomass']
|
252 |
+
}
|
253 |
+
all_results['biomass_models'].append(model_info)
|
254 |
|
255 |
+
for i, result in enumerate(substrate_results):
|
256 |
+
model_info = {
|
257 |
+
'model_number': i + 1,
|
258 |
+
'equation': result['equation'],
|
259 |
+
'parameters': result['model'].params['substrate'],
|
260 |
+
'R2': result['model'].r2['substrate'],
|
261 |
+
'RMSE': result['model'].rmse['substrate']
|
262 |
+
}
|
263 |
+
all_results['substrate_models'].append(model_info)
|
264 |
+
|
265 |
+
for i, result in enumerate(product_results):
|
266 |
+
model_info = {
|
267 |
+
'model_number': i + 1,
|
268 |
+
'equation': result['equation'],
|
269 |
+
'parameters': result['model'].params['product'],
|
270 |
+
'R2': result['model'].r2['product'],
|
271 |
+
'RMSE': result['model'].rmse['product']
|
272 |
+
}
|
273 |
+
all_results['product_models'].append(model_info)
|
274 |
+
|
275 |
+
results_text = "Resultados Experimentales:\n\n"
|
276 |
+
|
277 |
+
results_text += "Modelos de Biomasa:\n"
|
278 |
+
for model_info in all_results['biomass_models']:
|
279 |
+
results_text += f"""
|
280 |
+
Modelo {model_info['model_number']}:
|
281 |
+
Ecuación: {model_info['equation']}
|
282 |
+
Parámetros: {model_info['parameters']}
|
283 |
+
R²: {model_info['R2']:.4f}
|
284 |
+
RMSE: {model_info['RMSE']:.4f}
|
285 |
+
"""
|
286 |
+
|
287 |
+
results_text += "\nModelos de Sustrato:\n"
|
288 |
+
for model_info in all_results['substrate_models']:
|
289 |
+
results_text += f"""
|
290 |
+
Modelo {model_info['model_number']}:
|
291 |
+
Ecuación: {model_info['equation']}
|
292 |
+
Parámetros: {model_info['parameters']}
|
293 |
+
R²: {model_info['R2']:.4f}
|
294 |
+
RMSE: {model_info['RMSE']:.4f}
|
295 |
+
"""
|
296 |
+
|
297 |
+
results_text += "\nModelos de Producto:\n"
|
298 |
+
for model_info in all_results['product_models']:
|
299 |
+
results_text += f"""
|
300 |
+
Modelo {model_info['model_number']}:
|
301 |
+
Ecuación: {model_info['equation']}
|
302 |
+
Parámetros: {model_info['parameters']}
|
303 |
+
R²: {model_info['R2']:.4f}
|
304 |
+
RMSE: {model_info['RMSE']:.4f}
|
305 |
+
"""
|
306 |
+
|
307 |
+
prompt = f"""
|
308 |
+
Eres un experto en modelado de bioprocesos.
|
309 |
+
|
310 |
+
Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.
|
311 |
+
|
312 |
+
{results_text}
|
313 |
+
|
314 |
+
Tu análisis debe ser detallado y profesional.
|
315 |
+
"""
|
316 |
+
analysis = generate_analysis(prompt)
|
317 |
+
|
318 |
+
return [image], analysis
|