Update interface.py
Browse files- interface.py +0 -306
interface.py
CHANGED
@@ -1,309 +1,3 @@
|
|
1 |
-
# interface.py
|
2 |
-
|
3 |
-
# Importar 'spaces' y decoradores antes que cualquier biblioteca que pueda inicializar CUDA
|
4 |
-
from decorators import gpu_decorator
|
5 |
-
|
6 |
-
# Luego importar cualquier cosa relacionada con PyTorch o el modelo que va a usar la GPU
|
7 |
-
import torch
|
8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
-
import pandas as pd
|
10 |
-
import numpy as np
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
from PIL import Image
|
13 |
-
import io
|
14 |
-
from sympy import symbols, lambdify, sympify
|
15 |
-
|
16 |
-
# Importar otras partes necesarias del código (config, etc.)
|
17 |
-
from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE
|
18 |
-
|
19 |
-
# Cargar el modelo fuera de la función para evitar la inicialización innecesaria cada vez que se llame a la función
|
20 |
-
model_path = MODEL_PATH
|
21 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
22 |
-
model = AutoModelForCausalLM.from_pretrained(model_path)
|
23 |
-
|
24 |
-
###############################
|
25 |
-
|
26 |
-
# bioprocess_model.py
|
27 |
-
|
28 |
-
import numpy as np
|
29 |
-
import pandas as pd
|
30 |
-
import matplotlib.pyplot as plt
|
31 |
-
from scipy.integrate import odeint
|
32 |
-
from scipy.optimize import curve_fit
|
33 |
-
from sklearn.metrics import mean_squared_error
|
34 |
-
import seaborn as sns
|
35 |
-
from sympy import symbols, lambdify, sympify
|
36 |
-
|
37 |
-
class BioprocessModel:
|
38 |
-
def __init__(self):
|
39 |
-
self.params = {}
|
40 |
-
self.r2 = {}
|
41 |
-
self.rmse = {}
|
42 |
-
self.datax = []
|
43 |
-
self.datas = []
|
44 |
-
self.datap = []
|
45 |
-
self.dataxp = []
|
46 |
-
self.datasp = []
|
47 |
-
self.datapp = []
|
48 |
-
self.datax_std = []
|
49 |
-
self.datas_std = []
|
50 |
-
self.datap_std = []
|
51 |
-
self.models = {} # Initialize the models dictionary
|
52 |
-
|
53 |
-
@staticmethod
|
54 |
-
def logistic(time, xo, xm, um):
|
55 |
-
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))
|
56 |
-
|
57 |
-
@staticmethod
|
58 |
-
def substrate(time, so, p, q, xo, xm, um):
|
59 |
-
return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \
|
60 |
-
(q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
|
61 |
-
|
62 |
-
@staticmethod
|
63 |
-
def product(time, po, alpha, beta, xo, xm, um):
|
64 |
-
return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \
|
65 |
-
(beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
|
66 |
-
|
67 |
-
@staticmethod
|
68 |
-
def logistic_diff(X, t, params):
|
69 |
-
xo, xm, um = params
|
70 |
-
dXdt = um * X * (1 - X / xm)
|
71 |
-
return dXdt
|
72 |
-
|
73 |
-
def substrate_diff(self, S, t, params, biomass_params, X_func):
|
74 |
-
so, p, q = params
|
75 |
-
xo, xm, um = biomass_params
|
76 |
-
X_t = X_func(t)
|
77 |
-
dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t
|
78 |
-
return dSdt
|
79 |
-
|
80 |
-
def product_diff(self, P, t, params, biomass_params, X_func):
|
81 |
-
po, alpha, beta = params
|
82 |
-
xo, xm, um = biomass_params
|
83 |
-
X_t = X_func(t)
|
84 |
-
dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t
|
85 |
-
return dPdt
|
86 |
-
|
87 |
-
def process_data(self, df):
|
88 |
-
biomass_cols = [col for col in df.columns if 'Biomasa' in col]
|
89 |
-
substrate_cols = [col for col in df.columns if 'Sustrato' in col]
|
90 |
-
product_cols = [col for col in df.columns if 'Producto' in col]
|
91 |
-
|
92 |
-
time_col = [col for col in df.columns if 'Tiempo' in col][0]
|
93 |
-
time = df[time_col].values
|
94 |
-
|
95 |
-
data_biomass = np.array([df[col].values for col in biomass_cols])
|
96 |
-
self.datax.append(data_biomass)
|
97 |
-
self.dataxp.append(np.mean(data_biomass, axis=0))
|
98 |
-
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
|
99 |
-
|
100 |
-
data_substrate = np.array([df[col].values for col in substrate_cols])
|
101 |
-
self.datas.append(data_substrate)
|
102 |
-
self.datasp.append(np.mean(data_substrate, axis=0))
|
103 |
-
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
|
104 |
-
|
105 |
-
data_product = np.array([df[col].values for col in product_cols])
|
106 |
-
self.datap.append(data_product)
|
107 |
-
self.datapp.append(np.mean(data_product, axis=0))
|
108 |
-
self.datap_std.append(np.std(data_product, axis=0, ddof=1))
|
109 |
-
|
110 |
-
self.time = time
|
111 |
-
|
112 |
-
def set_model(self, model_type, equation, params_str):
|
113 |
-
"""
|
114 |
-
Sets up the model based on the type, equation, and parameters.
|
115 |
-
|
116 |
-
:param model_type: Type of the model ('biomass', 'substrate', 'product')
|
117 |
-
:param equation: The equation as a string
|
118 |
-
:param params_str: Comma-separated string of parameter names
|
119 |
-
"""
|
120 |
-
t_symbol = symbols('t')
|
121 |
-
expr = sympify(equation)
|
122 |
-
params = [param.strip() for param in params_str.split(',')]
|
123 |
-
params_symbols = symbols(params)
|
124 |
-
|
125 |
-
# Extraer símbolos utilizados en la expresión
|
126 |
-
used_symbols = expr.free_symbols
|
127 |
-
# Convertir símbolos a strings
|
128 |
-
used_params = [str(s) for s in used_symbols if s != t_symbol]
|
129 |
-
|
130 |
-
# Verificar que todos los parámetros en params_str estén usados en la ecuación
|
131 |
-
for param in params:
|
132 |
-
if param not in used_params:
|
133 |
-
raise ValueError(f"El parámetro '{param}' no se usa en la ecuación '{equation}'.")
|
134 |
-
|
135 |
-
if model_type == 'biomass':
|
136 |
-
# Biomasa como función de tiempo y parámetros
|
137 |
-
func_expr = expr
|
138 |
-
func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy')
|
139 |
-
self.models['biomass'] = {
|
140 |
-
'function': func,
|
141 |
-
'params': params
|
142 |
-
}
|
143 |
-
elif model_type in ['substrate', 'product']:
|
144 |
-
# Estos modelos dependen de biomasa, que ya debería estar establecida
|
145 |
-
if 'biomass' not in self.models:
|
146 |
-
raise ValueError("Biomasa debe estar configurada antes de Sustrato o Producto.")
|
147 |
-
biomass_func = self.models['biomass']['function']
|
148 |
-
# Reemplazar 'X(t)' por la función de biomasa
|
149 |
-
func_expr = expr.subs('X(t)', biomass_func)
|
150 |
-
func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy')
|
151 |
-
self.models[model_type] = {
|
152 |
-
'function': func,
|
153 |
-
'params': params
|
154 |
-
}
|
155 |
-
else:
|
156 |
-
raise ValueError(f"Tipo de modelo no soportado: {model_type}")
|
157 |
-
|
158 |
-
def fit_model(self, model_type, time, data, bounds=([-np.inf], [np.inf])):
|
159 |
-
"""
|
160 |
-
Fits the model to the data.
|
161 |
-
|
162 |
-
:param model_type: Type of the model ('biomass', 'substrate', 'product')
|
163 |
-
:param time: Time data
|
164 |
-
:param data: Observed data to fit
|
165 |
-
:param bounds: Bounds for the parameters
|
166 |
-
:return: Predicted data from the model
|
167 |
-
"""
|
168 |
-
if model_type not in self.models:
|
169 |
-
raise ValueError(f"Model type '{model_type}' is not set. Please use set_model first.")
|
170 |
-
|
171 |
-
func = self.models[model_type]['function']
|
172 |
-
params = self.models[model_type]['params']
|
173 |
-
|
174 |
-
# Depuración: Asegurarse de que los parámetros estén bien definidos
|
175 |
-
print(f"Fitting {model_type} model with function: {func} and parameters: {params}")
|
176 |
-
|
177 |
-
# Definir la función de ajuste (asegurarse de que toma los parámetros correctamente)
|
178 |
-
def fit_func(t, *args):
|
179 |
-
try:
|
180 |
-
y = func(t, *args)
|
181 |
-
print(f"fit_func called with args: {args}")
|
182 |
-
print(f"y_pred: {y}")
|
183 |
-
return y
|
184 |
-
except Exception as e:
|
185 |
-
print(f"Error in fit_func: {e}")
|
186 |
-
raise
|
187 |
-
|
188 |
-
# Depuración: Verificar el número de parámetros que se espera ajustar
|
189 |
-
print(f"Number of parameters to fit: {len(params)}")
|
190 |
-
|
191 |
-
# Definir una estimación inicial para los parámetros
|
192 |
-
p0 = [1.0] * len(params) # Puedes ajustar estos valores según sea necesario
|
193 |
-
print(f"Initial parameter guesses (p0): {p0}")
|
194 |
-
|
195 |
-
try:
|
196 |
-
# Verifica que curve_fit puede recibir la función correctamente
|
197 |
-
print(f"Calling curve_fit with time: {time}, data: {data}, bounds: {bounds}, p0: {p0}")
|
198 |
-
|
199 |
-
# Intentar ajustar el modelo usando curve_fit con p0
|
200 |
-
popt, _ = curve_fit(fit_func, time, data, p0=p0, bounds=bounds, maxfev=10000)
|
201 |
-
print(f"Optimal parameters found: {popt}")
|
202 |
-
|
203 |
-
# Guardar los parámetros ajustados en el modelo
|
204 |
-
self.params[model_type] = {param: val for param, val in zip(params, popt)}
|
205 |
-
y_pred = fit_func(time, *popt)
|
206 |
-
self.r2[model_type] = 1 - (np.sum((data - y_pred) ** 2) / np.sum((data - np.mean(data)) ** 2))
|
207 |
-
self.rmse[model_type] = np.sqrt(mean_squared_error(data, y_pred))
|
208 |
-
return y_pred
|
209 |
-
except Exception as e:
|
210 |
-
print(f"Error while fitting {model_type} model: {str(e)}")
|
211 |
-
raise
|
212 |
-
|
213 |
-
def plot_combined_results(self, time, biomass, substrate, product,
|
214 |
-
y_pred_biomass, y_pred_substrate, y_pred_product,
|
215 |
-
biomass_std=None, substrate_std=None, product_std=None,
|
216 |
-
experiment_name='', legend_position='best', params_position='upper right',
|
217 |
-
show_legend=True, show_params=True,
|
218 |
-
style='whitegrid', line_color='#0000FF', point_color='#000000',
|
219 |
-
line_style='-', marker_style='o'):
|
220 |
-
sns.set_style(style)
|
221 |
-
|
222 |
-
fig, axs = plt.subplots(3, 1, figsize=(10, 15))
|
223 |
-
|
224 |
-
# Gráfica de Biomasa
|
225 |
-
axs[0].plot(time, biomass, 'o', label='Datos de Biomasa')
|
226 |
-
for i, result in enumerate(biomass_results):
|
227 |
-
axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
|
228 |
-
axs[0].set_xlabel('Tiempo')
|
229 |
-
axs[0].set_ylabel('Biomasa')
|
230 |
-
if show_legend:
|
231 |
-
axs[0].legend(loc=legend_position)
|
232 |
-
|
233 |
-
# Gráfica de Sustrato
|
234 |
-
axs[1].plot(time, substrate, 'o', label='Datos de Sustrato')
|
235 |
-
for i, result in enumerate(substrate_results):
|
236 |
-
axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
|
237 |
-
axs[1].set_xlabel('Tiempo')
|
238 |
-
axs[1].set_ylabel('Sustrato')
|
239 |
-
if show_legend:
|
240 |
-
axs[1].legend(loc=legend_position)
|
241 |
-
|
242 |
-
# Gráfica de Producto
|
243 |
-
axs[2].plot(time, product, 'o', label='Datos de Producto')
|
244 |
-
for i, result in enumerate(product_results):
|
245 |
-
axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
|
246 |
-
axs[2].set_xlabel('Tiempo')
|
247 |
-
axs[2].set_ylabel('Producto')
|
248 |
-
if show_legend:
|
249 |
-
axs[2].legend(loc=legend_position)
|
250 |
-
|
251 |
-
plt.tight_layout()
|
252 |
-
return fig
|
253 |
-
|
254 |
-
###############################
|
255 |
-
|
256 |
-
# Decorador GPU aplicado para manejar la ejecución en GPU si está disponible
|
257 |
-
@gpu_decorator(duration=300)
|
258 |
-
def generate_analysis(prompt, max_length=1024, device=None):
|
259 |
-
try:
|
260 |
-
# Si el dispositivo no se especifica, usa CPU por defecto
|
261 |
-
if device is None:
|
262 |
-
device = torch.device('cpu')
|
263 |
-
|
264 |
-
# Mover el modelo al dispositivo adecuado (GPU o CPU) si es necesario
|
265 |
-
if next(model.parameters()).device != device:
|
266 |
-
model.to(device)
|
267 |
-
|
268 |
-
# Preparar los datos de entrada en el dispositivo correcto
|
269 |
-
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
270 |
-
max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings)
|
271 |
-
|
272 |
-
# Generar el texto
|
273 |
-
generated_ids = model.generate(
|
274 |
-
input_ids=input_ids,
|
275 |
-
max_length=max_gen_length,
|
276 |
-
temperature=0.7,
|
277 |
-
num_return_sequences=1,
|
278 |
-
no_repeat_ngram_size=2,
|
279 |
-
early_stopping=True
|
280 |
-
)
|
281 |
-
|
282 |
-
# Decodificar la respuesta generada
|
283 |
-
output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
284 |
-
analysis = output_text[len(prompt):].strip()
|
285 |
-
return analysis
|
286 |
-
except RuntimeError as e:
|
287 |
-
return f"Error durante la ejecución: {str(e)}"
|
288 |
-
except Exception as e:
|
289 |
-
return f"Ocurrió un error durante el análisis: {e}"
|
290 |
-
|
291 |
-
def parse_bounds(bounds_str, num_params):
|
292 |
-
try:
|
293 |
-
# Reemplazar 'inf' por 'np.inf' si el usuario lo escribió así
|
294 |
-
bounds_str = bounds_str.replace('inf', 'np.inf')
|
295 |
-
bounds = eval(f"[{bounds_str}]")
|
296 |
-
if len(bounds) != num_params:
|
297 |
-
raise ValueError("Número de límites no coincide con el número de parámetros.")
|
298 |
-
lower_bounds = [b[0] for b in bounds]
|
299 |
-
upper_bounds = [b[1] for b in bounds]
|
300 |
-
return lower_bounds, upper_bounds
|
301 |
-
except Exception as e:
|
302 |
-
print(f"Error al parsear los límites: {e}. Usando límites por defecto.")
|
303 |
-
lower_bounds = [-np.inf] * num_params
|
304 |
-
upper_bounds = [np.inf] * num_params
|
305 |
-
return lower_bounds, upper_bounds
|
306 |
-
|
307 |
def process_and_plot(
|
308 |
file,
|
309 |
biomass_eq1, biomass_eq2, biomass_eq3,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def process_and_plot(
|
2 |
file,
|
3 |
biomass_eq1, biomass_eq2, biomass_eq3,
|