# interface.py # Importar 'spaces' y decoradores antes que cualquier biblioteca que pueda inicializar CUDA from decorators import gpu_decorator # Luego importar cualquier cosa relacionada con PyTorch o el modelo que va a usar la GPU import torch from transformers import AutoTokenizer, AutoModelForCausalLM import pandas as pd import numpy as np import matplotlib.pyplot as plt from PIL import Image import io from sympy import symbols, lambdify, sympify # Importar otras partes necesarias del código (config, etc.) from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE # Cargar el modelo fuera de la función para evitar la inicialización innecesaria cada vez que se llame a la función model_path = MODEL_PATH tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) ############################### # bioprocess_model.py import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.integrate import odeint from scipy.optimize import curve_fit from sklearn.metrics import mean_squared_error import seaborn as sns class BioprocessModel: def __init__(self): self.params = {} self.r2 = {} self.rmse = {} self.datax = [] self.datas = [] self.datap = [] self.dataxp = [] self.datasp = [] self.datapp = [] self.datax_std = [] self.datas_std = [] self.datap_std = [] self.models = {} # Initialize the models dictionary @staticmethod def logistic(time, xo, xm, um): return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) @staticmethod def substrate(time, so, p, q, xo, xm, um): return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \ (q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time)))) @staticmethod def product(time, po, alpha, beta, xo, xm, um): return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \ (beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time)))) @staticmethod def logistic_diff(X, t, params): xo, xm, um = params dXdt = um * X * (1 - X / xm) return dXdt def substrate_diff(self, S, t, params, biomass_params, X_func): so, p, q = params xo, xm, um = biomass_params X_t = X_func(t) dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t return dSdt def product_diff(self, P, t, params, biomass_params, X_func): po, alpha, beta = params xo, xm, um = biomass_params X_t = X_func(t) dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t return dPdt def process_data(self, df): biomass_cols = [col for col in df.columns if 'Biomasa' in col] substrate_cols = [col for col in df.columns if 'Sustrato' in col] product_cols = [col for col in df.columns if 'Producto' in col] time_col = [col for col in df.columns if 'Tiempo' in col][0] time = df[time_col].values data_biomass = np.array([df[col].values for col in biomass_cols]) self.datax.append(data_biomass) self.dataxp.append(np.mean(data_biomass, axis=0)) self.datax_std.append(np.std(data_biomass, axis=0, ddof=1)) data_substrate = np.array([df[col].values for col in substrate_cols]) self.datas.append(data_substrate) self.datasp.append(np.mean(data_substrate, axis=0)) self.datas_std.append(np.std(data_substrate, axis=0, ddof=1)) data_product = np.array([df[col].values for col in product_cols]) self.datap.append(data_product) self.datapp.append(np.mean(data_product, axis=0)) self.datap_std.append(np.std(data_product, axis=0, ddof=1)) self.time = time def set_model(self, model_type, equation, params_str): """ Sets up the model based on the type, equation, and parameters. :param model_type: Type of the model ('biomass', 'substrate', 'product') :param equation: The equation as a string :param params_str: Comma-separated string of parameter names """ t_symbol = symbols('t') expr = sympify(equation) params = [param.strip() for param in params_str.split(',')] params_symbols = symbols(params) if model_type == 'biomass': # Assuming biomass is a function of time only for logistic func_expr = expr func = lambdify(t_symbol, func_expr, 'numpy') self.models['biomass'] = { 'function': func, 'params': params } elif model_type in ['substrate', 'product']: # These models depend on biomass, which should already be set if 'biomass' not in self.models: raise ValueError("Biomass model must be set before substrate or product models.") biomass_func = self.models['biomass']['function'] func_expr = expr.subs('X(t)', biomass_func(t_symbol)) func = lambdify((t_symbol, *params_symbols), func_expr, 'numpy') self.models[model_type] = { 'function': func, 'params': params } else: raise ValueError(f"Unsupported model type: {model_type}") def fit_model(self, model_type, time, data, bounds=([-np.inf], [np.inf])): """ Fits the model to the data. :param model_type: Type of the model ('biomass', 'substrate', 'product') :param time: Time data :param data: Observed data to fit :param bounds: Bounds for the parameters :return: Predicted data from the model """ if model_type not in self.models: raise ValueError(f"Model type '{model_type}' is not set. Please use set_model first.") func = self.models[model_type]['function'] params = self.models[model_type]['params'] # Depuración: Asegurarse de que los parámetros estén bien definidos print(f"Fitting {model_type} model with function: {func} and parameters: {params}") # Define the fitting function based on model type def fit_func(t, *args): # Asegurarse de que se pasa el número correcto de parámetros print(f"Calling fit_func with args: {args}") return func(t, *args) # Depuración: Verificar el número de parámetros que se espera ajustar print(f"Number of parameters to fit: {len(params)}") try: # Intentar ajustar el modelo usando curve_fit popt, _ = curve_fit(fit_func, time, data, bounds=bounds, maxfev=10000) print(f"Optimal parameters found: {popt}") # Guardar los parámetros ajustados en el modelo self.params[model_type] = {param: val for param, val in zip(params, popt)} y_pred = fit_func(time, *popt) self.r2[model_type] = 1 - (np.sum((data - y_pred) ** 2) / np.sum((data - np.mean(data)) ** 2)) self.rmse[model_type] = np.sqrt(mean_squared_error(data, y_pred)) return y_pred except Exception as e: print(f"Error while fitting {model_type} model: {str(e)}") raise def plot_combined_results(self, time, biomass, substrate, product, y_pred_biomass, y_pred_substrate, y_pred_product, biomass_std=None, substrate_std=None, product_std=None, experiment_name='', legend_position='best', params_position='upper right', show_legend=True, show_params=True, style='whitegrid', line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o'): sns.set_style(style) fig, ax1 = plt.subplots(figsize=(10, 7)) ax1.set_xlabel('Tiempo') ax1.set_ylabel('Biomasa', color=line_color) ax1.plot(time, biomass, marker=marker_style, linestyle='', color=point_color, label='Biomasa (Datos)') ax1.plot(time, y_pred_biomass, linestyle=line_style, color=line_color, label='Biomasa (Modelo)') ax1.tick_params(axis='y', labelcolor=line_color) ax2 = ax1.twinx() ax2.set_ylabel('Sustrato', color='green') ax2.plot(time, substrate, marker=marker_style, linestyle='', color='green', label='Sustrato (Datos)') ax2.plot(time, y_pred_substrate, linestyle=line_style, color='green', label='Sustrato (Modelo)') ax2.tick_params(axis='y', labelcolor='green') ax3 = ax1.twinx() ax3.spines["right"].set_position(("axes", 1.1)) ax3.set_ylabel('Producto', color='red') ax3.plot(time, product, marker=marker_style, linestyle='', color='red', label='Producto (Datos)') ax3.plot(time, y_pred_product, linestyle=line_style, color='red', label='Producto (Modelo)') ax3.tick_params(axis='y', labelcolor='red') fig.tight_layout() return fig ############################### # Decorador GPU aplicado para manejar la ejecución en GPU si está disponible @gpu_decorator(duration=300) def generate_analysis(prompt, max_length=1024, device=None): try: # Si el dispositivo no se especifica, usa CPU por defecto if device is None: device = torch.device('cpu') # Mover el modelo al dispositivo adecuado (GPU o CPU) si es necesario if next(model.parameters()).device != device: model.to(device) # Preparar los datos de entrada en el dispositivo correcto input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device) max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings) # Generar el texto generated_ids = model.generate( input_ids=input_ids, max_length=max_gen_length, temperature=0.7, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True ) # Decodificar la respuesta generada output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) analysis = output_text[len(prompt):].strip() return analysis except RuntimeError as e: return f"Error durante la ejecución: {str(e)}" except Exception as e: return f"Ocurrió un error durante el análisis: {e}" def parse_bounds(bounds_str, num_params): try: bounds = eval(f"[{bounds_str}]") if len(bounds) != num_params: raise ValueError lower_bounds = [b[0] for b in bounds] upper_bounds = [b[1] for b in bounds] return lower_bounds, upper_bounds except: lower_bounds = [-np.inf] * num_params upper_bounds = [np.inf] * num_params return lower_bounds, upper_bounds def process_and_plot( file, biomass_eq1, biomass_eq2, biomass_eq3, biomass_param1, biomass_param2, biomass_param3, biomass_bound1, biomass_bound2, biomass_bound3, substrate_eq1, substrate_eq2, substrate_eq3, substrate_param1, substrate_param2, substrate_param3, substrate_bound1, substrate_bound2, substrate_bound3, product_eq1, product_eq2, product_eq3, product_param1, product_param2, product_param3, product_bound1, product_bound2, product_bound3, legend_position, show_legend, show_params, biomass_eq_count, substrate_eq_count, product_eq_count, device=None ): # Leer el archivo Excel df = pd.read_excel(file.name) # Verificar que las columnas necesarias estén presentes expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto'] for col in expected_columns: if col not in df.columns: raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.") # Asignar los datos desde las columnas time = df['Tiempo'].values biomass_data = df['Biomasa'].values substrate_data = df['Sustrato'].values product_data = df['Producto'].values # Convierte los contadores a enteros biomass_eq_count = int(biomass_eq_count) substrate_eq_count = int(substrate_eq_count) product_eq_count = int(product_eq_count) # Recolecta las ecuaciones, parámetros y límites según los contadores biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count] biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count] biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count] substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count] substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count] substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count] product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count] product_params = [product_param1, product_param2, product_param3][:product_eq_count] product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count] biomass_results = [] substrate_results = [] product_results = [] # Ajusta los modelos de Biomasa for i in range(len(biomass_eqs)): equation = biomass_eqs[i] params_str = biomass_params[i] bounds_str = biomass_bounds[i] model = BioprocessModel() model.set_model('biomass', equation, params_str) params = [param.strip() for param in params_str.split(',')] lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) y_pred = model.fit_model( 'biomass', time, biomass_data, bounds=(lower_bounds, upper_bounds) ) biomass_results.append({ 'model': model, 'y_pred': y_pred, 'equation': equation }) # Usa el primer modelo de biomasa para X(t) biomass_model = biomass_results[0]['model'] biomass_params_values = list(biomass_model.params['biomass'].values()) biomass_func = biomass_model.models['biomass']['function'] # Ajusta los modelos de Sustrato for i in range(len(substrate_eqs)): equation = substrate_eqs[i] params_str = substrate_params[i] bounds_str = substrate_bounds[i] model = BioprocessModel() model.set_model('substrate', equation, params_str) params = model.models['substrate']['params'] lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) y_pred = model.fit_model( 'substrate', time, substrate_data, bounds=(lower_bounds, upper_bounds) ) substrate_results.append({ 'model': model, 'y_pred': y_pred, 'equation': equation }) # Ajusta los modelos de Producto for i in range(len(product_eqs)): equation = product_eqs[i] params_str = product_params[i] bounds_str = product_bounds[i] model = BioprocessModel() model.set_model('product', equation, params_str) params = model.models['product']['params'] lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) y_pred = model.fit_model( 'product', time, product_data, bounds=(lower_bounds, upper_bounds) ) product_results.append({ 'model': model, 'y_pred': y_pred, 'equation': equation }) # Genera las gráficas fig, axs = plt.subplots(3, 1, figsize=(10, 15)) # Gráfica de Biomasa axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa') for i, result in enumerate(biomass_results): axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}') axs[0].set_xlabel('Tiempo') axs[0].set_ylabel('Biomasa') if show_legend: axs[0].legend(loc=legend_position) # Gráfica de Sustrato axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato') for i, result in enumerate(substrate_results): axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}') axs[1].set_xlabel('Tiempo') axs[1].set_ylabel('Sustrato') if show_legend: axs[1].legend(loc=legend_position) # Gráfica de Producto axs[2].plot(time, product_data, 'o', label='Datos de Producto') for i, result in enumerate(product_results): axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}') axs[2].set_xlabel('Tiempo') axs[2].set_ylabel('Producto') if show_legend: axs[2].legend(loc=legend_position) plt.tight_layout() buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) image = Image.open(buf) prompt = f""" Eres un experto en modelado de bioprocesos. Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario. Biomasa: {biomass_results} Sustrato: {substrate_results} Producto: {product_results} """ analysis = generate_analysis(prompt, device=device) return [image], analysis