# interface.py from models import BioprocessModel import io from PIL import Image import pandas as pd import numpy as np import matplotlib.pyplot as plt import torch from transformers import AutoTokenizer, AutoModelForCausalLM from sympy import symbols, sympify, lambdify import copy from config import DEVICE, MODEL_PATH, MAX_LENGTH, TEMPERATURE from decorators import spaces # Configuración del dispositivo device = DEVICE # Cargar el modelo model_path = MODEL_PATH # Reemplaza con la ruta real de tu modelo tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) # No movemos el modelo al dispositivo aquí @spaces.GPU(duration=100) def generate_analysis(prompt, max_length=MAX_LENGTH, device=None): try: if device is None: device = torch.device('cpu') if next(model.parameters()).device != device: model.to(device) input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device) max_gen_length = min(max_length + input_ids.size(1), model.config.max_position_embeddings) generated_ids = model.generate( input_ids=input_ids, max_length=max_gen_length, temperature=TEMPERATURE, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True ) output_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) analysis = output_text[len(prompt):].strip() return analysis except Exception as e: return f"Ocurrió un error durante el análisis: {e}" def parse_bounds(bounds_str, num_params): try: bounds = eval(f"[{bounds_str}]") if len(bounds) != num_params: raise ValueError lower_bounds = [b[0] for b in bounds] upper_bounds = [b[1] for b in bounds] return lower_bounds, upper_bounds except: lower_bounds = [-np.inf] * num_params upper_bounds = [np.inf] * num_params return lower_bounds, upper_bounds @spaces.GPU(duration=100) def process_and_plot( file, biomass_eq1, biomass_eq2, biomass_eq3, biomass_param1, biomass_param2, biomass_param3, biomass_bound1, biomass_bound2, biomass_bound3, substrate_eq1, substrate_eq2, substrate_eq3, substrate_param1, substrate_param2, substrate_param3, substrate_bound1, substrate_bound2, substrate_bound3, product_eq1, product_eq2, product_eq3, product_param1, product_param2, product_param3, product_bound1, product_bound2, product_bound3, legend_position, show_legend, show_params, biomass_eq_count, substrate_eq_count, product_eq_count ): # Verificar que las columnas requeridas estén presentes en el archivo Excel df = pd.read_excel(file.name) expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto'] # Nombres en español for col in expected_columns: if col not in df.columns: raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.") # Asignación de datos desde las columnas en español time = df['Tiempo'].values # Columna de tiempo biomass_data = df['Biomasa'].values # Columna de biomasa substrate_data = df['Sustrato'].values # Columna de sustrato product_data = df['Producto'].values # Columna de producto # Convierte los contadores a enteros biomass_eq_count = int(biomass_eq_count) substrate_eq_count = int(substrate_eq_count) product_eq_count = int(product_eq_count) # Recolecta las ecuaciones, parámetros y límites según los contadores biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count] biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count] biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count] substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count] substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count] substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count] product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count] product_params = [product_param1, product_param2, product_param3][:product_eq_count] product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count] biomass_results = [] substrate_results = [] product_results = [] # Ajusta los modelos de Biomasa for i in range(len(biomass_eqs)): equation = biomass_eqs[i] params_str = biomass_params[i] bounds_str = biomass_bounds[i] model = BioprocessModel() model.set_model('biomass', equation, params_str) params = [param.strip() for param in params_str.split(',')] lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) y_pred = model.fit_model( 'biomass', time, biomass_data, bounds=(lower_bounds, upper_bounds) ) biomass_results.append({ 'model': copy.deepcopy(model), 'y_pred': y_pred, 'equation': equation }) # Usa el primer modelo de biomasa para X(t) biomass_model = biomass_results[0]['model'] X_t_func = biomass_model.models['biomass']['function'] biomass_params_values = list(biomass_model.params['biomass'].values()) # Ajusta los modelos de Sustrato for i in range(len(substrate_eqs)): equation = substrate_eqs[i] params_str = substrate_params[i] bounds_str = substrate_bounds[i] model = BioprocessModel() t_symbol = symbols('t') expr_substrate = sympify(equation) substrate_params_symbols = symbols([param.strip() for param in params_str.split(',')]) substrate_func_expr = expr_substrate.subs('X(t)', X_t_func(t_symbol, *biomass_params_values)) substrate_func = lambdify( (t_symbol, *substrate_params_symbols), substrate_func_expr, 'numpy' ) model.models['substrate'] = { 'function': substrate_func, 'params': [param.strip() for param in params_str.split(',')] } params = model.models['substrate']['params'] lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) y_pred = model.fit_model( 'substrate', time, substrate_data, bounds=(lower_bounds, upper_bounds) ) substrate_results.append({ 'model': copy.deepcopy(model), 'y_pred': y_pred, 'equation': equation }) # Ajusta los modelos de Producto for i in range(len(product_eqs)): equation = product_eqs[i] params_str = product_params[i] bounds_str = product_bounds[i] model = BioprocessModel() t_symbol = symbols('t') expr_product = sympify(equation) product_params_symbols = symbols([param.strip() for param in params_str.split(',')]) product_func_expr = expr_product.subs('X(t)', X_t_func(t_symbol, *biomass_params_values)) product_func = lambdify( (t_symbol, *product_params_symbols), product_func_expr, 'numpy' ) model.models['product'] = { 'function': product_func, 'params': [param.strip() for param in params_str.split(',')] } params = model.models['product']['params'] lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params)) y_pred = model.fit_model( 'product', time, product_data, bounds=(lower_bounds, upper_bounds) ) product_results.append({ 'model': copy.deepcopy(model), 'y_pred': y_pred, 'equation': equation }) # Genera las gráficas fig, axs = plt.subplots(3, 1, figsize=(10, 15)) # Gráfica de Biomasa axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa') for i, result in enumerate(biomass_results): axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}') axs[0].set_xlabel('Tiempo') axs[0].set_ylabel('Biomasa') if show_legend: axs[0].legend(loc=legend_position) # Gráfica de Sustrato axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato') for i, result in enumerate(substrate_results): axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}') axs[1].set_xlabel('Tiempo') axs[1].set_ylabel('Sustrato') if show_legend: axs[1].legend(loc=legend_position) # Gráfica de Producto axs[2].plot(time, product_data, 'o', label='Datos de Producto') for i, result in enumerate(product_results): axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}') axs[2].set_xlabel('Tiempo') axs[2].set_ylabel('Producto') if show_legend: axs[2].legend(loc=legend_position) plt.tight_layout() buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) image = Image.open(buf) all_results = { 'biomass_models': [], 'substrate_models': [], 'product_models': [] } for i, result in enumerate(biomass_results): model_info = { 'model_number': i + 1, 'equation': result['equation'], 'parameters': result['model'].params['biomass'], 'R2': result['model'].r2['biomass'], 'RMSE': result['model'].rmse['biomass'] } all_results['biomass_models'].append(model_info) for i, result in enumerate(substrate_results): model_info = { 'model_number': i + 1, 'equation': result['equation'], 'parameters': result['model'].params['substrate'], 'R2': result['model'].r2['substrate'], 'RMSE': result['model'].rmse['substrate'] } all_results['substrate_models'].append(model_info) for i, result in enumerate(product_results): model_info = { 'model_number': i + 1, 'equation': result['equation'], 'parameters': result['model'].params['product'], 'R2': result['model'].r2['product'], 'RMSE': result['model'].rmse['product'] } all_results['product_models'].append(model_info) results_text = "Resultados Experimentales:\n\n" results_text += "Modelos de Biomasa:\n" for model_info in all_results['biomass_models']: results_text += f""" Modelo {model_info['model_number']}: Ecuación: {model_info['equation']} Parámetros: {model_info['parameters']} R²: {model_info['R2']:.4f} RMSE: {model_info['RMSE']:.4f} """ results_text += "\nModelos de Sustrato:\n" for model_info in all_results['substrate_models']: results_text += f""" Modelo {model_info['model_number']}: Ecuación: {model_info['equation']} Parámetros: {model_info['parameters']} R²: {model_info['R2']:.4f} RMSE: {model_info['RMSE']:.4f} """ results_text += "\nModelos de Producto:\n" for model_info in all_results['product_models']: results_text += f""" Modelo {model_info['model_number']}: Ecuación: {model_info['equation']} Parámetros: {model_info['parameters']} R²: {model_info['R2']:.4f} RMSE: {model_info['RMSE']:.4f} """ prompt = f""" Eres un experto en modelado de bioprocesos. Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario. {results_text} Tu análisis debe ser detallado y profesional. """ analysis = generate_analysis(prompt) return [image], analysis