|
|
|
|
|
|
|
from pydantic import BaseModel, ConfigDict |
|
import numpy as np |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from scipy.integrate import odeint |
|
from scipy.optimize import curve_fit |
|
from sklearn.metrics import mean_squared_error |
|
import gradio as gr |
|
import io |
|
from PIL import Image |
|
import tempfile |
|
|
|
class YourModel(BaseModel): |
|
class Config: |
|
arbitrary_types_allowed = True |
|
|
|
class BioprocessModel: |
|
def __init__(self, model_type='logistic', maxfev=50000): |
|
self.params = {} |
|
self.r2 = {} |
|
self.rmse = {} |
|
self.datax = [] |
|
self.datas = [] |
|
self.datap = [] |
|
self.dataxp = [] |
|
self.datasp = [] |
|
self.datapp = [] |
|
self.datax_std = [] |
|
self.datas_std = [] |
|
self.datap_std = [] |
|
self.biomass_model = None |
|
self.biomass_diff = None |
|
self.model_type = model_type |
|
self.maxfev = maxfev |
|
|
|
@staticmethod |
|
def logistic(time, xo, xm, um): |
|
return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) |
|
|
|
@staticmethod |
|
def gompertz(time, xm, um, lag): |
|
return xm * np.exp(-np.exp((um * np.e / xm) * (lag - time) + 1)) |
|
|
|
@staticmethod |
|
def moser(time, Xm, um, Ks): |
|
return Xm * (1 - np.exp(-um * (time - Ks))) |
|
|
|
@staticmethod |
|
def logistic_diff(X, t, params): |
|
xo, xm, um = params |
|
return um * X * (1 - X / xm) |
|
|
|
@staticmethod |
|
def gompertz_diff(X, t, params): |
|
xm, um, lag = params |
|
return X * (um * np.e / xm) * np.exp((um * np.e / xm) * (lag - t) + 1) |
|
|
|
@staticmethod |
|
def moser_diff(X, t, params): |
|
Xm, um, Ks = params |
|
return um * (Xm - X) |
|
|
|
def substrate(self, time, so, p, q, biomass_params): |
|
X_t = self.biomass_model(time, *biomass_params) |
|
dXdt = np.gradient(X_t, time) |
|
integral_X = np.cumsum(X_t) * np.gradient(time) |
|
return so - p * (X_t - biomass_params[0]) - q * integral_X |
|
|
|
def product(self, time, po, alpha, beta, biomass_params): |
|
X_t = self.biomass_model(time, *biomass_params) |
|
dXdt = np.gradient(X_t, time) |
|
integral_X = np.cumsum(X_t) * np.gradient(time) |
|
return po + alpha * (X_t - biomass_params[0]) + beta * integral_X |
|
|
|
def process_data(self, df): |
|
biomass_cols = [col for col in df.columns if col[1] == 'Biomasa'] |
|
substrate_cols = [col for col in df.columns if col[1] == 'Sustrato'] |
|
product_cols = [col for col in df.columns if col[1] == 'Producto'] |
|
|
|
time_col = [col for col in df.columns if col[1] == 'Tiempo'][0] |
|
time = df[time_col].values |
|
|
|
data_biomass = [df[col].values for col in biomass_cols] |
|
data_biomass = np.array(data_biomass) |
|
self.datax.append(data_biomass) |
|
self.dataxp.append(np.mean(data_biomass, axis=0)) |
|
self.datax_std.append(np.std(data_biomass, axis=0, ddof=1)) |
|
|
|
data_substrate = [df[col].values for col in substrate_cols] |
|
data_substrate = np.array(data_substrate) |
|
self.datas.append(data_substrate) |
|
self.datasp.append(np.mean(data_substrate, axis=0)) |
|
self.datas_std.append(np.std(data_substrate, axis=0, ddof=1)) |
|
|
|
data_product = [df[col].values for col in product_cols] |
|
data_product = np.array(data_product) |
|
self.datap.append(data_product) |
|
self.datapp.append(np.mean(data_product, axis=0)) |
|
self.datap_std.append(np.std(data_product, axis=0, ddof=1)) |
|
|
|
self.time = time |
|
|
|
def fit_model(self): |
|
if self.model_type == 'logistic': |
|
self.biomass_model = self.logistic |
|
self.biomass_diff = self.logistic_diff |
|
elif self.model_type == 'gompertz': |
|
self.biomass_model = self.gompertz |
|
self.biomass_diff = self.gompertz_diff |
|
elif self.model_type == 'moser': |
|
self.biomass_model = self.moser |
|
self.biomass_diff = self.moser_diff |
|
|
|
def fit_biomass(self, time, biomass): |
|
try: |
|
if self.model_type == 'logistic': |
|
p0 = [min(biomass), max(biomass)*1.5 if max(biomass)>0 else 1.0, 0.1] |
|
popt, _ = curve_fit(self.logistic, time, biomass, p0=p0, maxfev=self.maxfev) |
|
self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]} |
|
y_pred = self.logistic(time, *popt) |
|
elif self.model_type == 'gompertz': |
|
p0 = [max(biomass) if max(biomass)>0 else 1.0, 0.1, time[np.argmax(np.gradient(biomass))]] |
|
popt, _ = curve_fit(self.gompertz, time, biomass, p0=p0, maxfev=self.maxfev) |
|
self.params['biomass'] = {'xm': popt[0], 'um': popt[1], 'lag': popt[2]} |
|
y_pred = self.gompertz(time, *popt) |
|
elif self.model_type == 'moser': |
|
p0 = [max(biomass) if max(biomass)>0 else 1.0, 0.1, min(time)] |
|
popt, _ = curve_fit(self.moser, time, biomass, p0=p0, maxfev=self.maxfev) |
|
self.params['biomass'] = {'Xm': popt[0], 'um': popt[1], 'Ks': popt[2]} |
|
y_pred = self.moser(time, *popt) |
|
|
|
self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2)) |
|
self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred)) |
|
return y_pred |
|
except Exception as e: |
|
print(f"Error en fit_biomass_{self.model_type}: {e}") |
|
return None |
|
|
|
def fit_substrate(self, time, substrate, biomass_params): |
|
try: |
|
if self.model_type == 'logistic': |
|
p0 = [min(substrate), 0.01, 0.01] |
|
popt, _ = curve_fit( |
|
lambda t, so, p, q: self.substrate(t, so, p, q, [biomass_params['xo'], biomass_params['xm'], biomass_params['um']]), |
|
time, substrate, p0=p0, maxfev=self.maxfev |
|
) |
|
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]} |
|
y_pred = self.substrate(time, *popt, [biomass_params['xo'], biomass_params['xm'], biomass_params['um']]) |
|
elif self.model_type == 'gompertz': |
|
p0 = [min(substrate), 0.01, 0.01] |
|
popt, _ = curve_fit( |
|
lambda t, so, p, q: self.substrate(t, so, p, q, [biomass_params['xm'], biomass_params['um'], biomass_params['lag']]), |
|
time, substrate, p0=p0, maxfev=self.maxfev |
|
) |
|
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]} |
|
y_pred = self.substrate(time, *popt, [biomass_params['xm'], biomass_params['um'], biomass_params['lag']]) |
|
elif self.model_type == 'moser': |
|
p0 = [min(substrate), 0.01, 0.01] |
|
popt, _ = curve_fit( |
|
lambda t, so, p, q: self.substrate(t, so, p, q, [biomass_params['Xm'], biomass_params['um'], biomass_params['Ks']]), |
|
time, substrate, p0=p0, maxfev=self.maxfev |
|
) |
|
self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]} |
|
y_pred = self.substrate(time, *popt, [biomass_params['Xm'], biomass_params['um'], biomass_params['Ks']]) |
|
self.r2['substrate'] = 1 - (np.sum((substrate - y_pred) ** 2) / np.sum((substrate - np.mean(substrate)) ** 2)) |
|
self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred)) |
|
return y_pred |
|
except Exception as e: |
|
print(f"Error en fit_substrate_{self.model_type}: {e}") |
|
return None |
|
|
|
def fit_product(self, time, product, biomass_params): |
|
try: |
|
if self.model_type == 'logistic': |
|
p0 = [min(product), 0.01, 0.01] |
|
popt, _ = curve_fit( |
|
lambda t, po, alpha, beta: self.product(t, po, alpha, beta, [biomass_params['xo'], biomass_params['xm'], biomass_params['um']]), |
|
time, product, p0=p0, maxfev=self.maxfev |
|
) |
|
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]} |
|
y_pred = self.product(time, *popt, [biomass_params['xo'], biomass_params['xm'], biomass_params['um']]) |
|
elif self.model_type == 'gompertz': |
|
p0 = [min(product), 0.01, 0.01] |
|
popt, _ = curve_fit( |
|
lambda t, po, alpha, beta: self.product(t, po, alpha, beta, [biomass_params['xm'], biomass_params['um'], biomass_params['lag']]), |
|
time, product, p0=p0, maxfev=self.maxfev |
|
) |
|
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]} |
|
y_pred = self.product(time, *popt, [biomass_params['xm'], biomass_params['um'], biomass_params['lag']]) |
|
elif self.model_type == 'moser': |
|
p0 = [min(product), 0.01, 0.01] |
|
popt, _ = curve_fit( |
|
lambda t, po, alpha, beta: self.product(t, po, alpha, beta, [biomass_params['Xm'], biomass_params['um'], biomass_params['Ks']]), |
|
time, product, p0=p0, maxfev=self.maxfev |
|
) |
|
self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]} |
|
y_pred = self.product(time, *popt, [biomass_params['Xm'], biomass_params['um'], biomass_params['Ks']]) |
|
self.r2['product'] = 1 - (np.sum((product - y_pred) ** 2) / np.sum((product - np.mean(product)) ** 2)) |
|
self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred)) |
|
return y_pred |
|
except Exception as e: |
|
print(f"Error en fit_product_{self.model_type}: {e}") |
|
return None |
|
|
|
def generate_fine_time_grid(self, time): |
|
time_fine = np.linspace(time.min(), time.max(), 500) |
|
return time_fine |
|
|
|
def system(self, y, t, biomass_params, substrate_params, product_params, model_type): |
|
X, S, P = y |
|
|
|
if model_type == 'logistic': |
|
dXdt = self.logistic_diff(X, t, biomass_params) |
|
elif model_type == 'gompertz': |
|
dXdt = self.gompertz_diff(X, t, biomass_params) |
|
elif model_type == 'moser': |
|
dXdt = self.moser_diff(X, t, biomass_params) |
|
else: |
|
dXdt = 0.0 |
|
|
|
so, p, q = substrate_params |
|
po, alpha, beta = product_params |
|
|
|
dSdt = -p * dXdt - q * X |
|
dPdt = alpha * dXdt + beta * X |
|
return [dXdt, dSdt, dPdt] |
|
|
|
def get_initial_conditions(self, time, biomass, substrate, product): |
|
if 'biomass' in self.params: |
|
if self.model_type == 'logistic': |
|
xo = self.params['biomass']['xo'] |
|
X0 = xo |
|
elif self.model_type == 'gompertz': |
|
xm = self.params['biomass']['xm'] |
|
um = self.params['biomass']['um'] |
|
lag = self.params['biomass']['lag'] |
|
X0 = xm * np.exp(-np.exp((um * np.e / xm)*(lag - 0)+1)) |
|
elif self.model_type == 'moser': |
|
Xm = self.params['biomass']['Xm'] |
|
um = self.params['biomass']['um'] |
|
Ks = self.params['biomass']['Ks'] |
|
X0 = Xm*(1 - np.exp(-um*(0 - Ks))) |
|
else: |
|
X0 = biomass[0] |
|
|
|
if 'substrate' in self.params: |
|
so = self.params['substrate']['so'] |
|
S0 = so |
|
else: |
|
S0 = substrate[0] |
|
|
|
if 'product' in self.params: |
|
po = self.params['product']['po'] |
|
P0 = po |
|
else: |
|
P0 = product[0] |
|
|
|
return [X0, S0, P0] |
|
|
|
def solve_differential_equations(self, time, biomass, substrate, product): |
|
if 'biomass' not in self.params or not self.params['biomass']: |
|
print("No hay parámetros de biomasa, no se pueden resolver las EDO.") |
|
return None, None, None, time |
|
|
|
if self.model_type == 'logistic': |
|
biomass_params = [self.params['biomass']['xo'], self.params['biomass']['xm'], self.params['biomass']['um']] |
|
elif self.model_type == 'gompertz': |
|
biomass_params = [self.params['biomass']['xm'], self.params['biomass']['um'], self.params['biomass']['lag']] |
|
elif self.model_type == 'moser': |
|
biomass_params = [self.params['biomass']['Xm'], self.params['biomass']['um'], self.params['biomass']['Ks']] |
|
else: |
|
biomass_params = [0,0,0] |
|
|
|
if 'substrate' in self.params: |
|
substrate_params = [self.params['substrate']['so'], self.params['substrate']['p'], self.params['substrate']['q']] |
|
else: |
|
substrate_params = [0,0,0] |
|
|
|
if 'product' in self.params: |
|
product_params = [self.params['product']['po'], self.params['product']['alpha'], self.params['product']['beta']] |
|
else: |
|
product_params = [0,0,0] |
|
|
|
initial_conditions = self.get_initial_conditions(time, biomass, substrate, product) |
|
time_fine = self.generate_fine_time_grid(time) |
|
sol = odeint(self.system, initial_conditions, time_fine, |
|
args=(biomass_params, substrate_params, product_params, self.model_type)) |
|
|
|
X = sol[:, 0] |
|
S = sol[:, 1] |
|
P = sol[:, 2] |
|
|
|
return X, S, P, time_fine |
|
|
|
def plot_results(self, time, biomass, substrate, product, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std=None, substrate_std=None, product_std=None, |
|
experiment_name='', legend_position='best', params_position='upper right', |
|
show_legend=True, show_params=True, |
|
style='whitegrid', |
|
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o', |
|
use_differential=False): |
|
|
|
if y_pred_biomass is None: |
|
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type}. Omitiendo figura.") |
|
return None |
|
|
|
sns.set_style(style) |
|
|
|
if use_differential and 'biomass' in self.params and self.params['biomass']: |
|
X, S, P, time_to_plot = self.solve_differential_equations(time, biomass, substrate, product) |
|
if X is not None: |
|
y_pred_biomass, y_pred_substrate, y_pred_product = X, S, P |
|
else: |
|
time_to_plot = time |
|
else: |
|
time_to_plot = time |
|
|
|
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15)) |
|
fig.suptitle(f'{experiment_name}', fontsize=16) |
|
|
|
plots = [ |
|
(ax1, biomass, y_pred_biomass, biomass_std, 'Biomasa', 'Modelo', self.params.get('biomass', {}), |
|
self.r2.get('biomass', np.nan), self.rmse.get('biomass', np.nan)), |
|
(ax2, substrate, y_pred_substrate, substrate_std, 'Sustrato', 'Modelo', self.params.get('substrate', {}), |
|
self.r2.get('substrate', np.nan), self.rmse.get('substrate', np.nan)), |
|
(ax3, product, y_pred_product, product_std, 'Producto', 'Modelo', self.params.get('product', {}), |
|
self.r2.get('product', np.nan), self.rmse.get('product', np.nan)) |
|
] |
|
|
|
for idx, (ax, data, y_pred, data_std, ylabel, model_name, params, r2, rmse) in enumerate(plots): |
|
if data_std is not None: |
|
ax.errorbar(time, data, yerr=data_std, fmt=marker_style, color=point_color, |
|
label='Datos experimentales', capsize=5) |
|
else: |
|
ax.plot(time, data, marker=marker_style, linestyle='', color=point_color, |
|
label='Datos experimentales') |
|
|
|
if y_pred is not None: |
|
ax.plot(time_to_plot, y_pred, linestyle=line_style, color=line_color, label=model_name) |
|
|
|
ax.set_xlabel('Tiempo') |
|
ax.set_ylabel(ylabel) |
|
if show_legend: |
|
ax.legend(loc=legend_position) |
|
ax.set_title(f'{ylabel}') |
|
|
|
if show_params and params and all(np.isfinite(list(map(float, params.values())))): |
|
param_text = '\n'.join([f"{k} = {v:.3f}" for k, v in params.items()]) |
|
text = f"{param_text}\nR² = {r2:.3f}\nRMSE = {rmse:.3f}" |
|
if params_position == 'outside right': |
|
bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5) |
|
ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction', |
|
verticalalignment='center', bbox=bbox_props) |
|
else: |
|
if params_position in ['upper right', 'lower right']: |
|
text_x = 0.95 |
|
ha = 'right' |
|
else: |
|
text_x = 0.05 |
|
ha = 'left' |
|
|
|
if params_position in ['upper right', 'upper left']: |
|
text_y = 0.95 |
|
va = 'top' |
|
else: |
|
text_y = 0.05 |
|
va = 'bottom' |
|
|
|
ax.text(text_x, text_y, text, transform=ax.transAxes, |
|
verticalalignment=va, horizontalalignment=ha, |
|
bbox={'boxstyle': 'round', 'facecolor':'white', 'alpha':0.5}) |
|
|
|
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) |
|
|
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png') |
|
buf.seek(0) |
|
image = Image.open(buf).convert("RGB") |
|
plt.close(fig) |
|
|
|
return image |
|
|
|
def plot_combined_results(self, time, biomass, substrate, product, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std=None, substrate_std=None, product_std=None, |
|
experiment_name='', legend_position='best', params_position='upper right', |
|
show_legend=True, show_params=True, |
|
style='whitegrid', |
|
line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o', |
|
use_differential=False): |
|
|
|
if y_pred_biomass is None: |
|
print(f"No se pudo ajustar biomasa para {experiment_name} con {self.model_type}. Omitiendo figura.") |
|
return None |
|
|
|
sns.set_style(style) |
|
|
|
if use_differential and 'biomass' in self.params and self.params['biomass']: |
|
X, S, P, time_to_plot = self.solve_differential_equations(time, biomass, substrate, product) |
|
if X is not None: |
|
y_pred_biomass, y_pred_substrate, y_pred_product = X, S, P |
|
else: |
|
time_to_plot = time |
|
else: |
|
time_to_plot = time |
|
|
|
fig, ax1 = plt.subplots(figsize=(10, 7)) |
|
fig.suptitle(f'{experiment_name}', fontsize=16) |
|
|
|
colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'} |
|
|
|
ax1.set_xlabel('Tiempo') |
|
ax1.set_ylabel('Biomasa', color=colors['Biomasa']) |
|
if biomass_std is not None: |
|
ax1.errorbar(time, biomass, yerr=biomass_std, fmt=marker_style, color=colors['Biomasa'], |
|
label='Biomasa (Datos)', capsize=5) |
|
else: |
|
ax1.plot(time, biomass, marker=marker_style, linestyle='', color=colors['Biomasa'], |
|
label='Biomasa (Datos)') |
|
ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=colors['Biomasa'], |
|
label='Biomasa (Modelo)') |
|
ax1.tick_params(axis='y', labelcolor=colors['Biomasa']) |
|
|
|
ax2 = ax1.twinx() |
|
ax2.set_ylabel('Sustrato', color=colors['Sustrato']) |
|
if substrate_std is not None: |
|
ax2.errorbar(time, substrate, yerr=substrate_std, fmt=marker_style, color=colors['Sustrato'], |
|
label='Sustrato (Datos)', capsize=5) |
|
else: |
|
ax2.plot(time, substrate, marker=marker_style, linestyle='', color=colors['Sustrato'], |
|
label='Sustrato (Datos)') |
|
if y_pred_substrate is not None: |
|
ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'], |
|
label='Sustrato (Modelo)') |
|
ax2.tick_params(axis='y', labelcolor=colors['Sustrato']) |
|
|
|
ax3 = ax1.twinx() |
|
ax3.spines["right"].set_position(("axes", 1.2)) |
|
ax3.set_frame_on(True) |
|
ax3.patch.set_visible(False) |
|
for sp in ax3.spines.values(): |
|
sp.set_visible(True) |
|
|
|
ax3.set_ylabel('Producto', color=colors['Producto']) |
|
if product_std is not None: |
|
ax3.errorbar(time, product, yerr=product_std, fmt=marker_style, color=colors['Producto'], |
|
label='Producto (Datos)', capsize=5) |
|
else: |
|
ax3.plot(time, product, marker=marker_style, linestyle='', color=colors['Producto'], |
|
label='Producto (Datos)') |
|
if y_pred_product is not None: |
|
ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=colors['Producto'], |
|
label='Producto (Modelo)') |
|
ax3.tick_params(axis='y', labelcolor=colors['Producto']) |
|
|
|
lines_labels = [ax.get_legend_handles_labels() for ax in [ax1, ax2, ax3]] |
|
lines, labels = [sum(lol, []) for lol in zip(*lines_labels)] |
|
if show_legend: |
|
ax1.legend(lines, labels, loc=legend_position) |
|
|
|
if show_params: |
|
param_text_biomass = '' |
|
if 'biomass' in self.params: |
|
param_text_biomass = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['biomass'].items()]) |
|
text_biomass = f"Biomasa:\n{param_text_biomass}\nR² = {self.r2.get('biomass', np.nan):.3f}\nRMSE = {self.rmse.get('biomass', np.nan):.3f}" |
|
|
|
param_text_substrate = '' |
|
if 'substrate' in self.params: |
|
param_text_substrate = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['substrate'].items()]) |
|
text_substrate = f"Sustrato:\n{param_text_substrate}\nR² = {self.r2.get('substrate', np.nan):.3f}\nRMSE = {self.rmse.get('substrate', np.nan):.3f}" |
|
|
|
param_text_product = '' |
|
if 'product' in self.params: |
|
param_text_product = '\n'.join([f"{k} = {v:.3f}" for k, v in self.params['product'].items()]) |
|
text_product = f"Producto:\n{param_text_product}\nR² = {self.r2.get('product', np.nan):.3f}\nRMSE = {self.rmse.get('product', np.nan):.3f}" |
|
|
|
total_text = f"{text_biomass}\n\n{text_substrate}\n\n{text_product}" |
|
|
|
if params_position == 'outside right': |
|
bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5) |
|
ax3.annotate(total_text, xy=(1.2, 0.5), xycoords='axes fraction', |
|
verticalalignment='center', bbox=bbox_props) |
|
else: |
|
if params_position in ['upper right', 'lower right']: |
|
text_x = 0.95 |
|
ha = 'right' |
|
else: |
|
text_x = 0.05 |
|
ha = 'left' |
|
|
|
if params_position in ['upper right', 'upper left']: |
|
text_y = 0.95 |
|
va = 'top' |
|
else: |
|
text_y = 0.05 |
|
va = 'bottom' |
|
|
|
ax1.text(text_x, text_y, total_text, transform=ax1.transAxes, |
|
verticalalignment=va, horizontalalignment=ha, |
|
bbox={'boxstyle':'round', 'facecolor':'white', 'alpha':0.5}) |
|
|
|
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) |
|
|
|
buf = io.BytesIO() |
|
fig.savefig(buf, format='png') |
|
buf.seek(0) |
|
image = Image.open(buf).convert("RGB") |
|
plt.close(fig) |
|
|
|
return image |
|
|
|
def process_all_data(file, legend_position, params_position, model_types, experiment_names, lower_bounds, upper_bounds, |
|
mode='independent', style='whitegrid', line_color='#0000FF', point_color='#000000', |
|
line_style='-', marker_style='o', show_legend=True, show_params=True, use_differential=False, maxfev_val=50000): |
|
|
|
try: |
|
xls = pd.ExcelFile(file.name) |
|
except Exception as e: |
|
print(f"Error al leer el archivo Excel: {e}") |
|
return [], pd.DataFrame() |
|
|
|
sheet_names = xls.sheet_names |
|
figures = [] |
|
comparison_data = [] |
|
experiment_counter = 0 |
|
|
|
for sheet_name in sheet_names: |
|
try: |
|
df = pd.read_excel(file.name, sheet_name=sheet_name, header=[0, 1]) |
|
except Exception as e: |
|
print(f"Error al leer la hoja '{sheet_name}': {e}") |
|
continue |
|
|
|
model_dummy = BioprocessModel() |
|
model_dummy.process_data(df) |
|
time = model_dummy.time |
|
|
|
if mode == 'independent': |
|
num_experiments = len(df.columns.levels[0]) |
|
for idx in range(num_experiments): |
|
col = df.columns.levels[0][idx] |
|
try: |
|
time_exp = df[(col, 'Tiempo')].dropna().values |
|
biomass = df[(col, 'Biomasa')].dropna().values |
|
substrate = df[(col, 'Sustrato')].dropna().values |
|
product = df[(col, 'Producto')].dropna().values |
|
except KeyError as e: |
|
print(f"Error al procesar el experimento '{col}': {e}") |
|
continue |
|
|
|
biomass_std = None |
|
substrate_std = None |
|
product_std = None |
|
if biomass.ndim > 1: |
|
biomass_std = np.std(biomass, axis=0, ddof=1) |
|
biomass = np.mean(biomass, axis=0) |
|
if substrate.ndim > 1: |
|
substrate_std = np.std(substrate, axis=0, ddof=1) |
|
substrate = np.mean(substrate, axis=0) |
|
if product.ndim > 1: |
|
product_std = np.std(product, axis=0, ddof=1) |
|
product = np.mean(product, axis=0) |
|
|
|
experiment_name = (experiment_names[experiment_counter] if experiment_counter < len(experiment_names) |
|
else f"Tratamiento {experiment_counter + 1}") |
|
|
|
for model_type in model_types: |
|
model = BioprocessModel(model_type=model_type, maxfev=maxfev_val) |
|
model.fit_model() |
|
|
|
y_pred_biomass = model.fit_biomass(time_exp, biomass) |
|
if y_pred_biomass is None: |
|
comparison_data.append({ |
|
'Experimento': experiment_name, |
|
'Modelo': model_type.capitalize(), |
|
'R² Biomasa': np.nan, |
|
'RMSE Biomasa': np.nan, |
|
'R² Sustrato': np.nan, |
|
'RMSE Sustrato': np.nan, |
|
'R² Producto': np.nan, |
|
'RMSE Producto': np.nan |
|
}) |
|
continue |
|
else: |
|
if 'biomass' in model.params and model.params['biomass']: |
|
y_pred_substrate = model.fit_substrate(time_exp, substrate, model.params['biomass']) |
|
y_pred_product = model.fit_product(time_exp, product, model.params['biomass']) |
|
else: |
|
y_pred_substrate = None |
|
y_pred_product = None |
|
|
|
comparison_data.append({ |
|
'Experimento': experiment_name, |
|
'Modelo': model_type.capitalize(), |
|
'R² Biomasa': model.r2.get('biomass', np.nan), |
|
'RMSE Biomasa': model.rmse.get('biomass', np.nan), |
|
'R² Sustrato': model.r2.get('substrate', np.nan), |
|
'RMSE Sustrato': model.rmse.get('substrate', np.nan), |
|
'R² Producto': model.r2.get('product', np.nan), |
|
'RMSE Producto': model.rmse.get('product', np.nan) |
|
}) |
|
|
|
if mode == 'combinado': |
|
fig = model.plot_combined_results(time_exp, biomass, substrate, product, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std, substrate_std, product_std, |
|
experiment_name, |
|
legend_position, params_position, |
|
show_legend, show_params, |
|
style, |
|
line_color, point_color, line_style, marker_style, |
|
use_differential) |
|
else: |
|
fig = model.plot_results(time_exp, biomass, substrate, product, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std, substrate_std, product_std, |
|
experiment_name, |
|
legend_position, params_position, |
|
show_legend, show_params, |
|
style, |
|
line_color, point_color, line_style, marker_style, |
|
use_differential) |
|
if fig is not None: |
|
figures.append(fig) |
|
|
|
experiment_counter += 1 |
|
|
|
elif mode in ['average', 'combinado']: |
|
try: |
|
time_exp = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values |
|
biomass = model_dummy.dataxp[-1] |
|
substrate = model_dummy.datasp[-1] |
|
product = model_dummy.datapp[-1] |
|
except IndexError as e: |
|
print(f"Error al obtener los datos promedio de la hoja '{sheet_name}': {e}") |
|
continue |
|
|
|
biomass_std = model_dummy.datax_std[-1] |
|
substrate_std = model_dummy.datas_std[-1] |
|
product_std = model_dummy.datap_std[-1] |
|
|
|
experiment_name = (experiment_names[experiment_counter] if experiment_counter < len(experiment_names) |
|
else f"Tratamiento {experiment_counter + 1}") |
|
|
|
for model_type in model_types: |
|
model = BioprocessModel(model_type=model_type, maxfev=maxfev_val) |
|
model.fit_model() |
|
|
|
y_pred_biomass = model.fit_biomass(time_exp, biomass) |
|
if y_pred_biomass is None: |
|
comparison_data.append({ |
|
'Experimento': experiment_name, |
|
'Modelo': model_type.capitalize(), |
|
'R² Biomasa': np.nan, |
|
'RMSE Biomasa': np.nan, |
|
'R² Sustrato': np.nan, |
|
'RMSE Sustrato': np.nan, |
|
'R² Producto': np.nan, |
|
'RMSE Producto': np.nan |
|
}) |
|
continue |
|
else: |
|
if 'biomass' in model.params and model.params['biomass']: |
|
y_pred_substrate = model.fit_substrate(time_exp, substrate, model.params['biomass']) |
|
y_pred_product = model.fit_product(time_exp, product, model.params['biomass']) |
|
else: |
|
y_pred_substrate = None |
|
y_pred_product = None |
|
|
|
comparison_data.append({ |
|
'Experimento': experiment_name, |
|
'Modelo': model_type.capitalize(), |
|
'R² Biomasa': model.r2.get('biomass', np.nan), |
|
'RMSE Biomasa': model.rmse.get('biomass', np.nan), |
|
'R² Sustrato': model.r2.get('substrate', np.nan), |
|
'RMSE Sustrato': model.rmse.get('substrate', np.nan), |
|
'R² Producto': model.r2.get('product', np.nan), |
|
'RMSE Producto': model.rmse.get('product', np.nan) |
|
}) |
|
|
|
if mode == 'combinado': |
|
fig = model.plot_combined_results(time_exp, biomass, substrate, product, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std, substrate_std, product_std, |
|
experiment_name, |
|
legend_position, params_position, |
|
show_legend, show_params, |
|
style, |
|
line_color, point_color, line_style, marker_style, |
|
use_differential) |
|
else: |
|
fig = model.plot_results(time_exp, biomass, substrate, product, |
|
y_pred_biomass, y_pred_substrate, y_pred_product, |
|
biomass_std, substrate_std, product_std, |
|
experiment_name, |
|
legend_position, params_position, |
|
show_legend, show_params, |
|
style, |
|
line_color, point_color, line_style, marker_style, |
|
use_differential) |
|
if fig is not None: |
|
figures.append(fig) |
|
|
|
experiment_counter += 1 |
|
|
|
comparison_df = pd.DataFrame(comparison_data) |
|
|
|
if not comparison_df.empty: |
|
comparison_df_sorted = comparison_df.sort_values( |
|
by=['R² Biomasa', 'R² Sustrato', 'R² Producto', 'RMSE Biomasa', 'RMSE Sustrato', 'RMSE Producto'], |
|
ascending=[False, False, False, True, True, True] |
|
).reset_index(drop=True) |
|
else: |
|
comparison_df_sorted = comparison_df |
|
|
|
return figures, comparison_df_sorted |
|
|
|
def create_interface(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Modelos de Bioproceso: Logístico, Gompertz, Moser y Luedeking-Piret") |
|
|
|
gr.Markdown(r""" |
|
## Ecuaciones Diferenciales Utilizadas |
|
|
|
**Biomasa:** |
|
|
|
- Logístico: |
|
$$ |
|
\frac{dX}{dt} = \mu_m X\left(1 - \frac{X}{X_m}\right) |
|
$$ |
|
|
|
- Gompertz: |
|
$$ |
|
X(t) = X_m \exp\left(-\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right)\right) |
|
$$ |
|
|
|
Ecuación diferencial: |
|
$$ |
|
\frac{dX}{dt} = X(t)\left(\frac{\mu_m e}{X_m}\right)\exp\left(\left(\frac{\mu_m e}{X_m}\right)(\text{lag}-t)+1\right) |
|
$$ |
|
|
|
- Moser (simplificado): |
|
$$ |
|
X(t)=X_m(1-e^{-\mu_m(t-K_s)}) |
|
$$ |
|
|
|
$$ |
|
\frac{dX}{dt}=\mu_m(X_m - X) |
|
$$ |
|
|
|
**Sustrato y Producto (Luedeking-Piret):** |
|
$$ |
|
\frac{dS}{dt} = -p \frac{dX}{dt} - q X |
|
$$ |
|
|
|
$$ |
|
\frac{dP}{dt} = \alpha \frac{dX}{dt} + \beta X |
|
$$ |
|
""") |
|
|
|
file_input = gr.File(label="Subir archivo Excel") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
legend_position = gr.Radio( |
|
choices=["upper left", "upper right", "lower left", "lower right", "best"], |
|
label="Posición de la leyenda", |
|
value="best" |
|
) |
|
show_legend = gr.Checkbox(label="Mostrar Leyenda", value=True) |
|
|
|
with gr.Column(): |
|
params_positions = ["upper left", "upper right", "lower left", "lower right", "outside right"] |
|
params_position = gr.Radio( |
|
choices=params_positions, |
|
label="Posición de los parámetros", |
|
value="upper right" |
|
) |
|
show_params = gr.Checkbox(label="Mostrar Parámetros", value=True) |
|
|
|
model_types = gr.CheckboxGroup( |
|
choices=["logistic", "gompertz", "moser"], |
|
label="Tipo(s) de Modelo", |
|
value=["logistic"] |
|
) |
|
mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent") |
|
use_differential = gr.Checkbox(label="Usar ecuaciones diferenciales para graficar", value=False) |
|
|
|
experiment_names = gr.Textbox( |
|
label="Nombres de los experimentos (uno por línea)", |
|
placeholder="Experimento 1\nExperimento 2\n...", |
|
lines=5 |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
lower_bounds = gr.Textbox( |
|
label="Lower Bounds (uno por línea, formato: param1,param2,param3)", |
|
placeholder="0,0,0\n0,0,0\n...", |
|
lines=5 |
|
) |
|
|
|
with gr.Column(): |
|
upper_bounds = gr.Textbox( |
|
label="Upper Bounds (uno por línea, formato: param1,param2,param3)", |
|
placeholder="inf,inf,inf\ninf,inf,inf\n...", |
|
lines=5 |
|
) |
|
|
|
styles = ['white', 'dark', 'whitegrid', 'darkgrid', 'ticks'] |
|
style_dropdown = gr.Dropdown(choices=styles, label="Selecciona el estilo de gráfico", value='whitegrid') |
|
|
|
line_color_picker = gr.ColorPicker(label="Color de la línea", value='#0000FF') |
|
point_color_picker = gr.ColorPicker(label="Color de los puntos", value='#000000') |
|
|
|
line_style_options = ['-', '--', '-.', ':'] |
|
line_style_dropdown = gr.Dropdown(choices=line_style_options, label="Estilo de línea", value='-') |
|
|
|
marker_style_options = ['o', 's', '^', 'v', 'D', 'x', '+', '*'] |
|
marker_style_dropdown = gr.Dropdown(choices=marker_style_options, label="Estilo de punto", value='o') |
|
|
|
maxfev_input = gr.Number(label="maxfev (Máx. evaluaciones para el ajuste)", value=50000) |
|
|
|
simulate_btn = gr.Button("Simular") |
|
|
|
output_gallery = gr.Gallery(label="Resultados", columns=2, height='auto') |
|
output_table = gr.Dataframe( |
|
label="Tabla Comparativa de Modelos", |
|
headers=["Experimento", "Modelo", "R² Biomasa", "RMSE Biomasa", |
|
"R² Sustrato", "RMSE Sustrato", "R² Producto", "RMSE Producto"], |
|
interactive=False |
|
) |
|
|
|
state_df = gr.State() |
|
|
|
def process_and_plot(file, legend_position, params_position, model_types, mode, experiment_names, |
|
lower_bounds, upper_bounds, style, |
|
line_color, point_color, line_style, marker_style, |
|
show_legend, show_params, use_differential, maxfev_input): |
|
|
|
experiment_names_list = experiment_names.strip().split('\n') if experiment_names.strip() else [] |
|
lower_bounds_list = [] |
|
if lower_bounds.strip(): |
|
for lb in lower_bounds.strip().split('\n'): |
|
lb_values = [] |
|
for val in lb.split(','): |
|
val = val.strip().lower() |
|
if val in ['inf', 'infty', 'infinity']: |
|
lb_values.append(-np.inf) |
|
else: |
|
try: |
|
lb_values.append(float(val)) |
|
except ValueError: |
|
lb_values.append(0.0) |
|
lower_bounds_list.append(tuple(lb_values)) |
|
upper_bounds_list = [] |
|
if upper_bounds.strip(): |
|
for ub in upper_bounds.strip().split('\n'): |
|
ub_values = [] |
|
for val in ub.split(','): |
|
val = val.strip().lower() |
|
if val in ['inf', 'infty', 'infinity']: |
|
ub_values.append(np.inf) |
|
else: |
|
try: |
|
ub_values.append(float(val)) |
|
except ValueError: |
|
ub_values.append(np.inf) |
|
upper_bounds_list.append(tuple(ub_values)) |
|
|
|
figures, comparison_df = process_all_data(file, legend_position, params_position, model_types, experiment_names_list, |
|
lower_bounds_list, upper_bounds_list, mode, style, |
|
line_color, point_color, line_style, marker_style, |
|
show_legend, show_params, use_differential, maxfev_val=int(maxfev_input)) |
|
|
|
return figures, comparison_df, comparison_df |
|
|
|
simulate_output = simulate_btn.click( |
|
fn=process_and_plot, |
|
inputs=[file_input, |
|
legend_position, |
|
params_position, |
|
model_types, |
|
mode, |
|
experiment_names, |
|
lower_bounds, |
|
upper_bounds, |
|
style_dropdown, |
|
line_color_picker, |
|
point_color_picker, |
|
line_style_dropdown, |
|
marker_style_dropdown, |
|
show_legend, |
|
show_params, |
|
use_differential, |
|
maxfev_input], |
|
outputs=[output_gallery, output_table, state_df] |
|
) |
|
|
|
def export_excel(df): |
|
if df.empty: |
|
return None |
|
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp: |
|
df.to_excel(tmp.name, index=False) |
|
return tmp.name |
|
|
|
export_btn = gr.Button("Exportar Tabla a Excel") |
|
file_output = gr.File() |
|
|
|
export_btn.click( |
|
fn=export_excel, |
|
inputs=state_df, |
|
outputs=file_output |
|
) |
|
|
|
return demo |
|
|
|
demo = create_interface() |
|
demo.launch(share=True) |
|
|