C2MV commited on
Commit
1105522
1 Parent(s): ccd76a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +669 -223
app.py CHANGED
@@ -1,229 +1,675 @@
1
- # interface.py
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  import numpy as np
4
  import pandas as pd
5
  import matplotlib.pyplot as plt
6
- from PIL import Image
 
 
 
 
 
7
  import io
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- from bioprocess_model import BioprocessModel
10
- from decorators import gpu_decorator # Asegúrate de que la ruta es correcta
11
-
12
- def parse_bounds(bounds_str, num_params):
13
- try:
14
- # Reemplazar 'inf' por 'np.inf' si el usuario lo escribió así
15
- bounds_str = bounds_str.replace('inf', 'np.inf')
16
- # Evaluar la cadena de límites
17
- bounds = eval(f"[{bounds_str}]")
18
- if len(bounds) != num_params:
19
- raise ValueError("Número de límites no coincide con el número de parámetros.")
20
- lower_bounds = [b[0] for b in bounds]
21
- upper_bounds = [b[1] for b in bounds]
22
- return lower_bounds, upper_bounds
23
- except Exception as e:
24
- print(f"Error al parsear los límites: {e}. Usando límites por defecto.")
25
- lower_bounds = [-np.inf] * num_params
26
- upper_bounds = [np.inf] * num_params
27
- return lower_bounds, upper_bounds
28
-
29
- @gpu_decorator(duration=300)
30
- def generate_analysis(prompt, max_length=1024, device=None):
31
- # Implementación existente para generar análisis usando Hugging Face o similar
32
- # Por ejemplo, podrías usar un modelo de lenguaje para generar texto
33
- # Aquí se deja como placeholder
34
- analysis = "Análisis generado por el modelo de lenguaje."
35
- return analysis
36
-
37
- @gpu_decorator(duration=600) # Ajusta la duración según tus necesidades
38
- def process_and_plot(
39
- file,
40
- biomass_eq1, biomass_eq2, biomass_eq3,
41
- biomass_param1, biomass_param2, biomass_param3,
42
- biomass_bound1, biomass_bound2, biomass_bound3,
43
- substrate_eq1, substrate_eq2, substrate_eq3,
44
- substrate_param1, substrate_param2, substrate_param3,
45
- substrate_bound1, substrate_bound2, substrate_bound3,
46
- product_eq1, product_eq2, product_eq3,
47
- product_param1, product_param2, product_param3,
48
- product_bound1, product_bound2, product_bound3,
49
- legend_position,
50
- show_legend,
51
- show_params,
52
- biomass_eq_count,
53
- substrate_eq_count,
54
- product_eq_count,
55
- device=None
56
- ):
57
- # Leer el archivo Excel
58
- df = pd.read_excel(file.name)
59
-
60
- # Verificar que las columnas necesarias estén presentes
61
- expected_columns = ['Tiempo', 'Biomasa', 'Sustrato', 'Producto']
62
- for col in expected_columns:
63
- if col not in df.columns:
64
- raise KeyError(f"La columna esperada '{col}' no se encuentra en el archivo Excel.")
65
-
66
- # Asignar los datos desde las columnas
67
- time = df['Tiempo'].values
68
- biomass_data = df['Biomasa'].values
69
- substrate_data = df['Sustrato'].values
70
- product_data = df['Producto'].values
71
-
72
- # Convierte los contadores a enteros
73
- biomass_eq_count = int(biomass_eq_count)
74
- substrate_eq_count = int(substrate_eq_count)
75
- product_eq_count = int(product_eq_count)
76
-
77
- # Recolecta las ecuaciones, parámetros y límites según los contadores
78
- biomass_eqs = [biomass_eq1, biomass_eq2, biomass_eq3][:biomass_eq_count]
79
- biomass_params = [biomass_param1, biomass_param2, biomass_param3][:biomass_eq_count]
80
- biomass_bounds = [biomass_bound1, biomass_bound2, biomass_bound3][:biomass_eq_count]
81
-
82
- substrate_eqs = [substrate_eq1, substrate_eq2, substrate_eq3][:substrate_eq_count]
83
- substrate_params = [substrate_param1, substrate_param2, substrate_param3][:substrate_eq_count]
84
- substrate_bounds = [substrate_bound1, substrate_bound2, substrate_bound3][:substrate_eq_count]
85
-
86
- product_eqs = [product_eq1, product_eq2, product_eq3][:product_eq_count]
87
- product_params = [product_param1, product_param2, product_param3][:product_eq_count]
88
- product_bounds = [product_bound1, product_bound2, product_bound3][:product_eq_count]
89
-
90
- biomass_results = []
91
- substrate_results = []
92
- product_results = []
93
-
94
- # Inicializar el modelo principal
95
- main_model = BioprocessModel()
96
-
97
- # Ajusta los modelos de Biomasa
98
- for i in range(len(biomass_eqs)):
99
- equation = biomass_eqs[i]
100
- params_str = biomass_params[i]
101
- bounds_str = biomass_bounds[i]
102
-
103
- try:
104
- main_model.set_model_biomass(equation, params_str)
105
- except ValueError as ve:
106
- raise ValueError(f"Error en la configuración del modelo de biomasa {i+1}: {ve}")
107
-
108
- params = [param.strip() for param in params_str.split(',')]
109
- lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
110
-
111
- try:
112
- y_pred = main_model.fit_model(
113
- 'biomass', time, biomass_data,
114
- bounds=(lower_bounds, upper_bounds)
115
- )
116
- biomass_results.append({
117
- 'model': main_model,
118
- 'y_pred': y_pred,
119
- 'equation': equation,
120
- 'params': main_model.params['biomass']
121
- })
122
- except Exception as e:
123
- raise RuntimeError(f"Error al ajustar el modelo de biomasa {i+1}: {e}")
124
-
125
- # Ajusta los modelos de Sustrato
126
- for i in range(len(substrate_eqs)):
127
- equation = substrate_eqs[i]
128
- params_str = substrate_params[i]
129
- bounds_str = substrate_bounds[i]
130
-
131
- try:
132
- main_model.set_model_substrate(equation, params_str)
133
- except ValueError as ve:
134
- raise ValueError(f"Error en la configuración del modelo de sustrato {i+1}: {ve}")
135
-
136
- params = [param.strip() for param in params_str.split(',')]
137
- lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
138
-
139
- try:
140
- y_pred = main_model.fit_model(
141
- 'substrate', time, substrate_data,
142
- bounds=(lower_bounds, upper_bounds)
143
- )
144
- substrate_results.append({
145
- 'model': main_model,
146
- 'y_pred': y_pred,
147
- 'equation': equation,
148
- 'params': main_model.params['substrate']
149
- })
150
- except Exception as e:
151
- raise RuntimeError(f"Error al ajustar el modelo de sustrato {i+1}: {e}")
152
-
153
- # Ajusta los modelos de Producto
154
- for i in range(len(product_eqs)):
155
- equation = product_eqs[i]
156
- params_str = product_params[i]
157
- bounds_str = product_bounds[i]
158
-
159
- try:
160
- main_model.set_model_product(equation, params_str)
161
- except ValueError as ve:
162
- raise ValueError(f"Error en la configuración del modelo de producto {i+1}: {ve}")
163
-
164
- params = [param.strip() for param in params_str.split(',')]
165
- lower_bounds, upper_bounds = parse_bounds(bounds_str, len(params))
166
-
167
- try:
168
- y_pred = main_model.fit_model(
169
- 'product', time, product_data,
170
- bounds=(lower_bounds, upper_bounds)
171
- )
172
- product_results.append({
173
- 'model': main_model,
174
- 'y_pred': y_pred,
175
- 'equation': equation,
176
- 'params': main_model.params['product']
177
- })
178
- except Exception as e:
179
- raise RuntimeError(f"Error al ajustar el modelo de producto {i+1}: {e}")
180
-
181
- # Genera las gráficas
182
- fig, axs = plt.subplots(3, 1, figsize=(10, 15))
183
-
184
- # Gráfica de Biomasa
185
- axs[0].plot(time, biomass_data, 'o', label='Datos de Biomasa')
186
- for i, result in enumerate(biomass_results):
187
- axs[0].plot(time, result['y_pred'], '-', label=f'Modelo de Biomasa {i+1}')
188
- axs[0].set_xlabel('Tiempo')
189
- axs[0].set_ylabel('Biomasa')
190
- if show_legend:
191
- axs[0].legend(loc=legend_position)
192
-
193
- # Gráfica de Sustrato
194
- axs[1].plot(time, substrate_data, 'o', label='Datos de Sustrato')
195
- for i, result in enumerate(substrate_results):
196
- axs[1].plot(time, result['y_pred'], '-', label=f'Modelo de Sustrato {i+1}')
197
- axs[1].set_xlabel('Tiempo')
198
- axs[1].set_ylabel('Sustrato')
199
- if show_legend:
200
- axs[1].legend(loc=legend_position)
201
-
202
- # Gráfica de Producto
203
- axs[2].plot(time, product_data, 'o', label='Datos de Producto')
204
- for i, result in enumerate(product_results):
205
- axs[2].plot(time, result['y_pred'], '-', label=f'Modelo de Producto {i+1}')
206
- axs[2].set_xlabel('Tiempo')
207
- axs[2].set_ylabel('Producto')
208
- if show_legend:
209
- axs[2].legend(loc=legend_position)
210
-
211
- plt.tight_layout()
212
- buf = io.BytesIO()
213
- plt.savefig(buf, format='png')
214
- buf.seek(0)
215
- image = Image.open(buf)
216
-
217
- prompt = f"""
218
- Eres un experto en modelado de bioprocesos.
219
- Analiza los siguientes resultados experimentales y proporciona un veredicto sobre la calidad de los modelos, sugiriendo mejoras si es necesario.
220
- Biomasa:
221
- {biomass_results}
222
- Sustrato:
223
- {substrate_results}
224
- Producto:
225
- {product_results}
226
- """
227
- analysis = generate_analysis(prompt, device=device)
228
-
229
- return image, analysis
 
1
+ # -*- coding: utf-8 -*-
2
+ """PrediLectia - Gradio Final v2 with Multiple Y-Axes in Combined Plot.ipynb"""
3
+
4
+ # Instalación de librerías necesarias
5
+ #!pip install gradio seaborn scipy -q
6
+ import os
7
+ os.system('pip install gradio seaborn scipy scikit-learn openpyxl pydantic==1.10.0')
8
+
9
+ from pydantic import BaseModel, ConfigDict
10
+
11
+ class YourModel(BaseModel):
12
+ class Config:
13
+ arbitrary_types_allowed = True
14
 
15
  import numpy as np
16
  import pandas as pd
17
  import matplotlib.pyplot as plt
18
+ import seaborn as sns
19
+ from scipy.integrate import odeint
20
+ from scipy.interpolate import interp1d
21
+ from scipy.optimize import curve_fit
22
+ from sklearn.metrics import mean_squared_error
23
+ import gradio as gr
24
  import io
25
+ from PIL import Image
26
+
27
+ # Definición de la clase BioprocessModel
28
+ class BioprocessModel:
29
+ def __init__(self):
30
+ self.params = {}
31
+ self.r2 = {}
32
+ self.rmse = {}
33
+ self.datax = []
34
+ self.datas = []
35
+ self.datap = []
36
+ self.dataxp = []
37
+ self.datasp = []
38
+ self.datapp = []
39
+ self.datax_std = []
40
+ self.datas_std = []
41
+ self.datap_std = []
42
+
43
+ # Funciones modelo analíticas
44
+ @staticmethod
45
+ def logistic(time, xo, xm, um):
46
+ return (xo * np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time)))
47
+
48
+ @staticmethod
49
+ def substrate(time, so, p, q, xo, xm, um):
50
+ return so - (p * xo * ((np.exp(um * time)) / (1 - (xo / xm) * (1 - np.exp(um * time))) - 1)) - \
51
+ (q * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
52
+
53
+ @staticmethod
54
+ def product(time, po, alpha, beta, xo, xm, um):
55
+ return po + (alpha * xo * ((np.exp(um * time) / (1 - (xo / xm) * (1 - np.exp(um * time)))) - 1)) + \
56
+ (beta * (xm / um) * np.log(1 - (xo / xm) * (1 - np.exp(um * time))))
57
+
58
+ # Funciones modelo diferenciales
59
+ @staticmethod
60
+ def logistic_diff(X, t, params):
61
+ xo, xm, um = params
62
+ dXdt = um * X * (1 - X / xm)
63
+ return dXdt
64
+
65
+ def substrate_diff(self, S, t, params, biomass_params, X_func):
66
+ so, p, q = params
67
+ xo, xm, um = biomass_params
68
+ X_t = X_func(t)
69
+ dSdt = -p * (um * X_t * (1 - X_t / xm)) - q * X_t
70
+ return dSdt
71
+
72
+ def product_diff(self, P, t, params, biomass_params, X_func):
73
+ po, alpha, beta = params
74
+ xo, xm, um = biomass_params
75
+ X_t = X_func(t)
76
+ dPdt = alpha * (um * X_t * (1 - X_t / xm)) + beta * X_t
77
+ return dPdt
78
+
79
+ # Métodos de procesamiento y ajuste de datos
80
+ def process_data(self, df):
81
+ # Obtener todas las columnas que contengan "Biomasa", "Sustrato", y "Producto"
82
+ biomass_cols = [col for col in df.columns if col[1] == 'Biomasa']
83
+ substrate_cols = [col for col in df.columns if col[1] == 'Sustrato']
84
+ product_cols = [col for col in df.columns if col[1] == 'Producto']
85
+
86
+ # Procesar los datos de tiempo
87
+ time_col = [col for col in df.columns if col[1] == 'Tiempo'][0]
88
+ time = df[time_col].values
89
+
90
+ # Procesar los datos de biomasa
91
+ data_biomass = [df[col].values for col in biomass_cols]
92
+ data_biomass = np.array(data_biomass) # shape (num_experiments, num_time_points)
93
+ self.datax.append(data_biomass)
94
+ self.dataxp.append(np.mean(data_biomass, axis=0))
95
+ self.datax_std.append(np.std(data_biomass, axis=0, ddof=1))
96
+
97
+ # Procesar los datos de sustrato
98
+ data_substrate = [df[col].values for col in substrate_cols]
99
+ data_substrate = np.array(data_substrate)
100
+ self.datas.append(data_substrate)
101
+ self.datasp.append(np.mean(data_substrate, axis=0))
102
+ self.datas_std.append(np.std(data_substrate, axis=0, ddof=1))
103
+
104
+ # Procesar los datos de producto
105
+ data_product = [df[col].values for col in product_cols]
106
+ data_product = np.array(data_product)
107
+ self.datap.append(data_product)
108
+ self.datapp.append(np.mean(data_product, axis=0))
109
+ self.datap_std.append(np.std(data_product, axis=0, ddof=1))
110
+
111
+ self.time = time
112
+
113
+ def fit_model(self, model_type='logistic'):
114
+ if model_type == 'logistic':
115
+ self.fit_biomass = self.fit_biomass_logistic
116
+ self.fit_substrate = self.fit_substrate_logistic
117
+ self.fit_product = self.fit_product_logistic
118
+ # Puedes agregar más modelos aquí si los necesitas.
119
+
120
+ def fit_biomass_logistic(self, time, biomass, bounds):
121
+ popt, _ = curve_fit(self.logistic, time, biomass, bounds=bounds, maxfev=10000)
122
+ self.params['biomass'] = {'xo': popt[0], 'xm': popt[1], 'um': popt[2]}
123
+ y_pred = self.logistic(time, *popt)
124
+ self.r2['biomass'] = 1 - (np.sum((biomass - y_pred) ** 2) / np.sum((biomass - np.mean(biomass)) ** 2))
125
+ self.rmse['biomass'] = np.sqrt(mean_squared_error(biomass, y_pred))
126
+ return y_pred
127
+
128
+ def fit_substrate_logistic(self, time, substrate, biomass_params, bounds):
129
+ popt, _ = curve_fit(lambda t, so, p, q: self.substrate(t, so, p, q, *biomass_params.values()),
130
+ time, substrate, bounds=bounds)
131
+ self.params['substrate'] = {'so': popt[0], 'p': popt[1], 'q': popt[2]}
132
+ y_pred = self.substrate(time, *popt, *biomass_params.values())
133
+ self.r2['substrate'] = 1 - (np.sum((substrate - y_pred) ** 2) / np.sum((substrate - np.mean(substrate)) ** 2))
134
+ self.rmse['substrate'] = np.sqrt(mean_squared_error(substrate, y_pred))
135
+ return y_pred
136
+
137
+ def fit_product_logistic(self, time, product, biomass_params, bounds):
138
+ popt, _ = curve_fit(lambda t, po, alpha, beta: self.product(t, po, alpha, beta, *biomass_params.values()),
139
+ time, product, bounds=bounds)
140
+ self.params['product'] = {'po': popt[0], 'alpha': popt[1], 'beta': popt[2]}
141
+ y_pred = self.product(time, *popt, *biomass_params.values())
142
+ self.r2['product'] = 1 - (np.sum((product - y_pred) ** 2) / np.sum((product - np.mean(product)) ** 2))
143
+ self.rmse['product'] = np.sqrt(mean_squared_error(product, y_pred))
144
+ return y_pred
145
+
146
+ # Métodos de visualización de resultados
147
+ def generate_fine_time_grid(self, time):
148
+ # Generar una malla temporal más fina para curvas suaves
149
+ time_fine = np.linspace(time.min(), time.max(), 500)
150
+ return time_fine
151
+
152
+ def solve_differential_equations(self, time, initial_conditions, params):
153
+ # Resolver la ecuación diferencial para biomasa
154
+ xo, xm, um = params['biomass'].values()
155
+ biomass_params = [xo, xm, um]
156
+ time_fine = self.generate_fine_time_grid(time)
157
+
158
+ # Resolver biomasa
159
+ X0 = xo
160
+ X = odeint(self.logistic_diff, X0, time_fine, args=(biomass_params,)).flatten()
161
+
162
+ # Crear función de interpolación para X(t)
163
+ X_func = interp1d(time_fine, X, kind='linear', fill_value="extrapolate")
164
+
165
+ # Resolver sustrato
166
+ so, p, q = params['substrate'].values()
167
+ substrate_params = [so, p, q]
168
+ S0 = so
169
+ S = odeint(self.substrate_diff, S0, time_fine, args=(substrate_params, biomass_params, X_func)).flatten()
170
+
171
+ # Resolver producto
172
+ po, alpha, beta = params['product'].values()
173
+ product_params = [po, alpha, beta]
174
+ P0 = po
175
+ P = odeint(self.product_diff, P0, time_fine, args=(product_params, biomass_params, X_func)).flatten()
176
+
177
+ return X, S, P, time_fine
178
+
179
+ def plot_results(self, time, biomass, substrate, product,
180
+ y_pred_biomass, y_pred_substrate, y_pred_product,
181
+ biomass_std=None, substrate_std=None, product_std=None,
182
+ experiment_name='', legend_position='best', params_position='upper right',
183
+ show_legend=True, show_params=True,
184
+ style='whitegrid',
185
+ line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
186
+ use_differential=False):
187
+ sns.set_style(style) # Establecer el estilo seleccionado
188
+
189
+ if use_differential:
190
+ y_pred_biomass, y_pred_substrate, y_pred_product, time_to_plot = self.solve_differential_equations(
191
+ time, [biomass[0], substrate[0], product[0]], self.params)
192
+ else:
193
+ time_to_plot = time
194
+
195
+ fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 15))
196
+ fig.suptitle(f'{experiment_name}', fontsize=16)
197
+
198
+ plots = [
199
+ (ax1, biomass, y_pred_biomass, biomass_std, 'Biomasa', 'Modelo', self.params['biomass'],
200
+ self.r2['biomass'], self.rmse['biomass']),
201
+ (ax2, substrate, y_pred_substrate, substrate_std, 'Sustrato', 'Modelo', self.params['substrate'],
202
+ self.r2['substrate'], self.rmse['substrate']),
203
+ (ax3, product, y_pred_product, product_std, 'Producto', 'Modelo', self.params['product'],
204
+ self.r2['product'], self.rmse['product'])
205
+ ]
206
+
207
+ for idx, (ax, data, y_pred, data_std, ylabel, model_name, params, r2, rmse) in enumerate(plots):
208
+ if data_std is not None:
209
+ ax.errorbar(time, data, yerr=data_std, fmt=marker_style, color=point_color,
210
+ label='Datos experimentales', capsize=5)
211
+ else:
212
+ ax.plot(time, data, marker=marker_style, linestyle='', color=point_color,
213
+ label='Datos experimentales')
214
+ if use_differential:
215
+ ax.plot(time_to_plot, y_pred, linestyle=line_style, color=line_color, label=model_name)
216
+ else:
217
+ ax.plot(time, y_pred, linestyle=line_style, color=line_color, label=model_name)
218
+ ax.set_xlabel('Tiempo')
219
+ ax.set_ylabel(ylabel)
220
+ if show_legend:
221
+ ax.legend(loc=legend_position)
222
+ ax.set_title(f'{ylabel}')
223
+
224
+ if show_params:
225
+ param_text = '\n'.join([f"{k} = {v:.4f}" for k, v in params.items()])
226
+ text = f"{param_text}\nR² = {r2:.4f}\nRMSE = {rmse:.4f}"
227
+
228
+ # Si la posición es 'outside right', ajustar la posición del texto
229
+ if params_position == 'outside right':
230
+ bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5)
231
+ ax.annotate(text, xy=(1.05, 0.5), xycoords='axes fraction',
232
+ verticalalignment='center', bbox=bbox_props)
233
+ else:
234
+ if params_position in ['upper right', 'lower right']:
235
+ text_x = 0.95
236
+ ha = 'right'
237
+ else:
238
+ text_x = 0.05
239
+ ha = 'left'
240
+
241
+ if params_position in ['upper right', 'upper left']:
242
+ text_y = 0.95
243
+ va = 'top'
244
+ else:
245
+ text_y = 0.05
246
+ va = 'bottom'
247
+
248
+ ax.text(text_x, text_y, text, transform=ax.transAxes,
249
+ verticalalignment=va, horizontalalignment=ha,
250
+ bbox={'boxstyle': 'round', 'facecolor': 'white', 'alpha': 0.5})
251
+
252
+ plt.tight_layout()
253
+ return fig
254
+
255
+ def plot_combined_results(self, time, biomass, substrate, product,
256
+ y_pred_biomass, y_pred_substrate, y_pred_product,
257
+ biomass_std=None, substrate_std=None, product_std=None,
258
+ experiment_name='', legend_position='best', params_position='upper right',
259
+ show_legend=True, show_params=True,
260
+ style='whitegrid',
261
+ line_color='#0000FF', point_color='#000000', line_style='-', marker_style='o',
262
+ use_differential=False):
263
+ sns.set_style(style) # Establecer el estilo seleccionado
264
+
265
+ if use_differential:
266
+ y_pred_biomass, y_pred_substrate, y_pred_product, time_to_plot = self.solve_differential_equations(
267
+ time, [biomass[0], substrate[0], product[0]], self.params)
268
+ else:
269
+ time_to_plot = time
270
+
271
+ fig, ax1 = plt.subplots(figsize=(10, 7))
272
+ fig.suptitle(f'{experiment_name}', fontsize=16)
273
+
274
+ # Colores específicos para cada variable
275
+ colors = {'Biomasa': 'blue', 'Sustrato': 'green', 'Producto': 'red'}
276
+
277
+ # Plot Biomasa en ax1
278
+ ax1.set_xlabel('Tiempo')
279
+ ax1.set_ylabel('Biomasa', color=colors['Biomasa'])
280
+ if biomass_std is not None:
281
+ ax1.errorbar(time, biomass, yerr=biomass_std, fmt=marker_style, color=colors['Biomasa'],
282
+ label='Biomasa (Datos)', capsize=5)
283
+ else:
284
+ ax1.plot(time, biomass, marker=marker_style, linestyle='', color=colors['Biomasa'],
285
+ label='Biomasa (Datos)')
286
+ if use_differential:
287
+ ax1.plot(time_to_plot, y_pred_biomass, linestyle=line_style, color=colors['Biomasa'],
288
+ label='Biomasa (Modelo)')
289
+ else:
290
+ ax1.plot(time, y_pred_biomass, linestyle=line_style, color=colors['Biomasa'],
291
+ label='Biomasa (Modelo)')
292
+ ax1.tick_params(axis='y', labelcolor=colors['Biomasa'])
293
+
294
+ # Crear segundo eje y para Sustrato
295
+ ax2 = ax1.twinx()
296
+ ax2.set_ylabel('Sustrato', color=colors['Sustrato'])
297
+ if substrate_std is not None:
298
+ ax2.errorbar(time, substrate, yerr=substrate_std, fmt=marker_style, color=colors['Sustrato'],
299
+ label='Sustrato (Datos)', capsize=5)
300
+ else:
301
+ ax2.plot(time, substrate, marker=marker_style, linestyle='', color=colors['Sustrato'],
302
+ label='Sustrato (Datos)')
303
+ if use_differential:
304
+ ax2.plot(time_to_plot, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'],
305
+ label='Sustrato (Modelo)')
306
+ else:
307
+ ax2.plot(time, y_pred_substrate, linestyle=line_style, color=colors['Sustrato'],
308
+ label='Sustrato (Modelo)')
309
+ ax2.tick_params(axis='y', labelcolor=colors['Sustrato'])
310
+
311
+ # Crear tercer eje y para Producto
312
+ ax3 = ax1.twinx()
313
+ # Desplazar el tercer eje para evitar superposición
314
+ ax3.spines["right"].set_position(("axes", 1.1))
315
+ ax3.set_frame_on(True)
316
+ ax3.patch.set_visible(False)
317
+ for sp in ax3.spines.values():
318
+ sp.set_visible(True)
319
+
320
+ ax3.set_ylabel('Producto', color=colors['Producto'])
321
+ if product_std is not None:
322
+ ax3.errorbar(time, product, yerr=product_std, fmt=marker_style, color=colors['Producto'],
323
+ label='Producto (Datos)', capsize=5)
324
+ else:
325
+ ax3.plot(time, product, marker=marker_style, linestyle='', color=colors['Producto'],
326
+ label='Producto (Datos)')
327
+ if use_differential:
328
+ ax3.plot(time_to_plot, y_pred_product, linestyle=line_style, color=colors['Producto'],
329
+ label='Producto (Modelo)')
330
+ else:
331
+ ax3.plot(time, y_pred_product, linestyle=line_style, color=colors['Producto'],
332
+ label='Producto (Modelo)')
333
+ ax3.tick_params(axis='y', labelcolor=colors['Producto'])
334
+
335
+ # Manejo de leyendas
336
+ lines_labels = [ax.get_legend_handles_labels() for ax in [ax1, ax2, ax3]]
337
+ lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
338
+ if show_legend:
339
+ ax1.legend(lines, labels, loc=legend_position)
340
+
341
+ # Mostrar parámetros y estadísticas en el gráfico
342
+ if show_params:
343
+ param_text_biomass = '\n'.join([f"{k} = {v:.4f}" for k, v in self.params['biomass'].items()])
344
+ text_biomass = f"Biomasa:\n{param_text_biomass}\nR² = {self.r2['biomass']:.4f}\nRMSE = {self.rmse['biomass']:.4f}"
345
+
346
+ param_text_substrate = '\n'.join([f"{k} = {v:.4f}" for k, v in self.params['substrate'].items()])
347
+ text_substrate = f"Sustrato:\n{param_text_substrate}\nR² = {self.r2['substrate']:.4f}\nRMSE = {self.rmse['substrate']:.4f}"
348
+
349
+ param_text_product = '\n'.join([f"{k} = {v:.4f}" for k, v in self.params['product'].items()])
350
+ text_product = f"Producto:\n{param_text_product}\nR² = {self.r2['product']:.4f}\nRMSE = {self.rmse['product']:.4f}"
351
+
352
+ total_text = f"{text_biomass}\n\n{text_substrate}\n\n{text_product}"
353
+
354
+ if params_position == 'outside right':
355
+ bbox_props = dict(boxstyle='round', facecolor='white', alpha=0.5)
356
+ ax3.annotate(total_text, xy=(1.2, 0.5), xycoords='axes fraction',
357
+ verticalalignment='center', bbox=bbox_props)
358
+ else:
359
+ if params_position in ['upper right', 'lower right']:
360
+ text_x = 0.95
361
+ ha = 'right'
362
+ else:
363
+ text_x = 0.05
364
+ ha = 'left'
365
+
366
+ if params_position in ['upper right', 'upper left']:
367
+ text_y = 0.95
368
+ va = 'top'
369
+ else:
370
+ text_y = 0.05
371
+ va = 'bottom'
372
+
373
+ ax1.text(text_x, text_y, total_text, transform=ax1.transAxes,
374
+ verticalalignment=va, horizontalalignment=ha,
375
+ bbox={'boxstyle': 'round', 'facecolor': 'white', 'alpha': 0.5})
376
+
377
+ plt.tight_layout()
378
+ return fig
379
+
380
+ # Función de procesamiento de datos
381
+ def process_data(file, legend_position, params_position, model_type, experiment_names, lower_bounds, upper_bounds,
382
+ mode='independent', style='whitegrid', line_color='#0000FF', point_color='#000000',
383
+ line_style='-', marker_style='o', show_legend=True, show_params=True, use_differential=False):
384
+ # Leer todas las hojas del archivo Excel
385
+ xls = pd.ExcelFile(file.name)
386
+ sheet_names = xls.sheet_names
387
+
388
+ model = BioprocessModel()
389
+ model.fit_model(model_type)
390
+ figures = []
391
+
392
+ # Si no se proporcionan suficientes límites, usar valores predeterminados
393
+ default_lower_bounds = (0, 0, 0)
394
+ default_upper_bounds = (np.inf, np.inf, np.inf)
395
+
396
+ experiment_counter = 0 # Contador global de experimentos
397
+
398
+ for sheet_name in sheet_names:
399
+ df = pd.read_excel(file.name, sheet_name=sheet_name, header=[0, 1])
400
+
401
+ # Procesar datos
402
+ model.process_data(df)
403
+ time = model.time
404
+
405
+ if mode == 'independent':
406
+ # Modo independiente: iterar sobre cada experimento
407
+ num_experiments = len(df.columns.levels[0])
408
+ for idx in range(num_experiments):
409
+ col = df.columns.levels[0][idx]
410
+ time = df[(col, 'Tiempo')].dropna().values
411
+ biomass = df[(col, 'Biomasa')].dropna().values
412
+ substrate = df[(col, 'Sustrato')].dropna().values
413
+ product = df[(col, 'Producto')].dropna().values
414
+
415
+ # Si hay replicados en el experimento, calcular la desviación estándar
416
+ biomass_std = None
417
+ substrate_std = None
418
+ product_std = None
419
+ if biomass.ndim > 1:
420
+ biomass_std = np.std(biomass, axis=0, ddof=1)
421
+ biomass = np.mean(biomass, axis=0)
422
+ if substrate.ndim > 1:
423
+ substrate_std = np.std(substrate, axis=0, ddof=1)
424
+ substrate = np.mean(substrate, axis=0)
425
+ if product.ndim > 1:
426
+ product_std = np.std(product, axis=0, ddof=1)
427
+ product = np.mean(product, axis=0)
428
+
429
+ # Obtener límites o usar valores predeterminados
430
+ lower_bound = lower_bounds[experiment_counter] if experiment_counter < len(lower_bounds) else default_lower_bounds
431
+ upper_bound = upper_bounds[experiment_counter] if experiment_counter < len(upper_bounds) else default_upper_bounds
432
+ bounds = (lower_bound, upper_bound)
433
+
434
+ # Ajustar el modelo
435
+ y_pred_biomass = model.fit_biomass(time, biomass, bounds)
436
+ y_pred_substrate = model.fit_substrate(time, substrate, model.params['biomass'], bounds)
437
+ y_pred_product = model.fit_product(time, product, model.params['biomass'], bounds)
438
+
439
+ # Usar el nombre del experimento proporcionado o un nombre por defecto
440
+ experiment_name = experiment_names[experiment_counter] if experiment_counter < len(experiment_names) else f"Tratamiento {experiment_counter + 1}"
441
+
442
+ if mode == 'combinado':
443
+ fig = model.plot_combined_results(time, biomass, substrate, product,
444
+ y_pred_biomass, y_pred_substrate, y_pred_product,
445
+ biomass_std, substrate_std, product_std,
446
+ experiment_name, legend_position, params_position,
447
+ show_legend, show_params,
448
+ style,
449
+ line_color, point_color, line_style, marker_style,
450
+ use_differential)
451
+ else:
452
+ fig = model.plot_results(time, biomass, substrate, product,
453
+ y_pred_biomass, y_pred_substrate, y_pred_product,
454
+ biomass_std, substrate_std, product_std,
455
+ experiment_name, legend_position, params_position,
456
+ show_legend, show_params,
457
+ style,
458
+ line_color, point_color, line_style, marker_style,
459
+ use_differential)
460
+ figures.append(fig)
461
+
462
+ experiment_counter += 1
463
+
464
+ elif mode == 'average':
465
+ # Modo promedio: usar dataxp, datasp y datapp
466
+ time = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values
467
+ biomass = model.dataxp[-1]
468
+ substrate = model.datasp[-1]
469
+ product = model.datapp[-1]
470
+
471
+ # Obtener las desviaciones estándar
472
+ biomass_std = model.datax_std[-1]
473
+ substrate_std = model.datas_std[-1]
474
+ product_std = model.datap_std[-1]
475
+
476
+ # Obtener límites o usar valores predeterminados
477
+ lower_bound = lower_bounds[experiment_counter] if experiment_counter < len(lower_bounds) else default_lower_bounds
478
+ upper_bound = upper_bounds[experiment_counter] if experiment_counter < len(upper_bounds) else default_upper_bounds
479
+ bounds = (lower_bound, upper_bound)
480
+
481
+ # Ajustar el modelo
482
+ y_pred_biomass = model.fit_biomass(time, biomass, bounds)
483
+ y_pred_substrate = model.fit_substrate(time, substrate, model.params['biomass'], bounds)
484
+ y_pred_product = model.fit_product(time, product, model.params['biomass'], bounds)
485
+
486
+ # Usar el nombre del experimento proporcionado o un nombre por defecto
487
+ experiment_name = experiment_names[experiment_counter] if experiment_counter < len(experiment_names) else f"Tratamiento {experiment_counter + 1}"
488
+
489
+ if mode == 'combinado':
490
+ fig = model.plot_combined_results(time, biomass, substrate, product,
491
+ y_pred_biomass, y_pred_substrate, y_pred_product,
492
+ biomass_std, substrate_std, product_std,
493
+ experiment_name, legend_position, params_position,
494
+ show_legend, show_params,
495
+ style,
496
+ line_color, point_color, line_style, marker_style,
497
+ use_differential)
498
+ else:
499
+ fig = model.plot_results(time, biomass, substrate, product,
500
+ y_pred_biomass, y_pred_substrate, y_pred_product,
501
+ biomass_std, substrate_std, product_std,
502
+ experiment_name, legend_position, params_position,
503
+ show_legend, show_params,
504
+ style,
505
+ line_color, point_color, line_style, marker_style,
506
+ use_differential)
507
+ figures.append(fig)
508
+
509
+ experiment_counter += 1
510
+
511
+ elif mode == 'combinado':
512
+ # Modo combinado: combinar las gráficas en una sola
513
+ time = df[(df.columns.levels[0][0], 'Tiempo')].dropna().values
514
+ biomass = model.dataxp[-1]
515
+ substrate = model.datasp[-1]
516
+ product = model.datapp[-1]
517
+
518
+ # Obtener las desviaciones estándar
519
+ biomass_std = model.datax_std[-1]
520
+ substrate_std = model.datas_std[-1]
521
+ product_std = model.datap_std[-1]
522
+
523
+ # Obtener límites o usar valores predeterminados
524
+ lower_bound = lower_bounds[experiment_counter] if experiment_counter < len(lower_bounds) else default_lower_bounds
525
+ upper_bound = upper_bounds[experiment_counter] if experiment_counter < len(upper_bounds) else default_upper_bounds
526
+ bounds = (lower_bound, upper_bound)
527
+
528
+ # Ajustar el modelo
529
+ y_pred_biomass = model.fit_biomass(time, biomass, bounds)
530
+ y_pred_substrate = model.fit_substrate(time, substrate, model.params['biomass'], bounds)
531
+ y_pred_product = model.fit_product(time, product, model.params['biomass'], bounds)
532
+
533
+ # Usar el nombre del experimento proporcionado o un nombre por defecto
534
+ experiment_name = experiment_names[experiment_counter] if experiment_counter < len(experiment_names) else f"Tratamiento {experiment_counter + 1}"
535
+
536
+ fig = model.plot_combined_results(time, biomass, substrate, product,
537
+ y_pred_biomass, y_pred_substrate, y_pred_product,
538
+ biomass_std, substrate_std, product_std,
539
+ experiment_name, legend_position, params_position,
540
+ show_legend, show_params,
541
+ style,
542
+ line_color, point_color, line_style, marker_style,
543
+ use_differential)
544
+ figures.append(fig)
545
+
546
+ experiment_counter += 1
547
+
548
+ return figures
549
+
550
+ def create_interface():
551
+ with gr.Blocks() as demo:
552
+ gr.Markdown("# Modelos de Bioproceso: Logístico y Luedeking-Piret")
553
+ gr.Markdown(
554
+ "Sube un archivo Excel con múltiples pestañas. Cada pestaña debe contener columnas 'Tiempo', 'Biomasa', 'Sustrato' y 'Producto' para cada experimento.")
555
+
556
+ file_input = gr.File(label="Subir archivo Excel")
557
+
558
+ with gr.Row():
559
+ with gr.Column():
560
+ legend_position = gr.Radio(
561
+ choices=["upper left", "upper right", "lower left", "lower right", "best"],
562
+ label="Posición de la leyenda",
563
+ value="best"
564
+ )
565
+ show_legend = gr.Checkbox(label="Mostrar Leyenda", value=True)
566
+
567
+ with gr.Column():
568
+ params_positions = ["upper left", "upper right", "lower left", "lower right", "outside right"]
569
+ params_position = gr.Radio(
570
+ choices=params_positions,
571
+ label="Posición de los parámetros",
572
+ value="upper right"
573
+ )
574
+ show_params = gr.Checkbox(label="Mostrar Parámetros", value=True)
575
+
576
+ model_type = gr.Radio(["logistic"], label="Tipo de Modelo", value="logistic")
577
+ mode = gr.Radio(["independent", "average", "combinado"], label="Modo de Análisis", value="independent")
578
+
579
+ use_differential = gr.Checkbox(label="Usar ecuaciones diferenciales para graficar", value=False)
580
+
581
+ experiment_names = gr.Textbox(
582
+ label="Nombres de los experimentos (uno por línea)",
583
+ placeholder="Experimento 1\nExperimento 2\n...",
584
+ lines=5
585
+ )
586
+
587
+ with gr.Row():
588
+ with gr.Column():
589
+ lower_bounds = gr.Textbox(
590
+ label="Lower Bounds (uno por línea, formato: xo,xm,um)",
591
+ placeholder="0,0,0\n0,0,0\n...",
592
+ lines=5
593
+ )
594
+
595
+ with gr.Column():
596
+ upper_bounds = gr.Textbox(
597
+ label="Upper Bounds (uno por línea, formato: xo,xm,um)",
598
+ placeholder="inf,inf,inf\ninf,inf,inf\n...",
599
+ lines=5
600
+ )
601
+
602
+ # Añadir un desplegable para seleccionar el estilo del gráfico
603
+ styles = ['white', 'dark', 'whitegrid', 'darkgrid', 'ticks']
604
+ style_dropdown = gr.Dropdown(choices=styles, label="Selecciona el estilo de gráfico", value='whitegrid')
605
+
606
+ # Añadir color pickers para líneas y puntos
607
+ line_color_picker = gr.ColorPicker(label="Color de la línea", value='#0000FF')
608
+ point_color_picker = gr.ColorPicker(label="Color de los puntos", value='#000000')
609
+
610
+ # Añadir listas desplegables para tipo de línea y tipo de punto
611
+ line_style_options = ['-', '--', '-.', ':']
612
+ line_style_dropdown = gr.Dropdown(choices=line_style_options, label="Estilo de línea", value='-')
613
+
614
+ marker_style_options = ['o', 's', '^', 'v', 'D', 'x', '+', '*']
615
+ marker_style_dropdown = gr.Dropdown(choices=marker_style_options, label="Estilo de punto", value='o')
616
+
617
+ simulate_btn = gr.Button("Simular")
618
+
619
+ # Definir un componente gr.Gallery para las salidas
620
+ output_gallery = gr.Gallery(label="Resultados", columns=2, height='auto')
621
+
622
+ def process_and_plot(file, legend_position, params_position, model_type, mode, experiment_names,
623
+ lower_bounds, upper_bounds, style,
624
+ line_color, point_color, line_style, marker_style,
625
+ show_legend, show_params, use_differential):
626
+ # Dividir los nombres de experimentos y límites en listas
627
+ experiment_names_list = experiment_names.strip().split('\n') if experiment_names.strip() else []
628
+ lower_bounds_list = [tuple(map(float, lb.split(','))) for lb in
629
+ lower_bounds.strip().split('\n')] if lower_bounds.strip() else []
630
+ upper_bounds_list = [tuple(map(float, ub.split(','))) for ub in
631
+ upper_bounds.strip().split('\n')] if upper_bounds.strip() else []
632
+
633
+ # Procesar los datos y generar gráficos
634
+ figures = process_data(file, legend_position, params_position, model_type, experiment_names_list,
635
+ lower_bounds_list, upper_bounds_list, mode, style,
636
+ line_color, point_color, line_style, marker_style,
637
+ show_legend, show_params, use_differential)
638
+
639
+ # Convertir las figuras a imágenes y devolverlas como lista
640
+ image_list = []
641
+ for fig in figures:
642
+ buf = io.BytesIO()
643
+ fig.savefig(buf, format='png')
644
+ buf.seek(0)
645
+ image = Image.open(buf)
646
+ image_list.append(image)
647
+
648
+ return image_list
649
+
650
+ simulate_btn.click(
651
+ fn=process_and_plot,
652
+ inputs=[file_input,
653
+ legend_position,
654
+ params_position,
655
+ model_type,
656
+ mode,
657
+ experiment_names,
658
+ lower_bounds,
659
+ upper_bounds,
660
+ style_dropdown,
661
+ line_color_picker,
662
+ point_color_picker,
663
+ line_style_dropdown,
664
+ marker_style_dropdown,
665
+ show_legend,
666
+ show_params,
667
+ use_differential],
668
+ outputs=output_gallery
669
+ )
670
+
671
+ return demo
672
 
673
+ # Crear y lanzar la interfaz
674
+ demo = create_interface()
675
+ demo.launch(share=True)