File size: 3,848 Bytes
3d04cf1
9a33833
98bd34e
3d04cf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d8a1d3
3d04cf1
 
 
 
 
 
 
9d8a1d3
3d04cf1
 
 
 
 
9d8a1d3
 
 
 
 
 
 
3d04cf1
 
3e028aa
3d04cf1
 
3e028aa
3d04cf1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# app.py

import gradio as gr
from models import load_embedding_model, load_yi_coder_model
from pinecone_utils import connect_to_pinecone, vector_search
from ui import build_interface
from config import SIMILARITY_THRESHOLD_DEFAULT, SYSTEM_PROMPT, MAX_LENGTH_DEFAULT
from decorators import gpu_decorator
import torch
import spaces

# Cargar modelos
embedding_model = load_embedding_model()
tokenizer, yi_coder_model, yi_coder_device = load_yi_coder_model()

# Conectar a Pinecone
index = connect_to_pinecone()

# Funci贸n para generar c贸digo utilizando Yi-Coder
@gpu_decorator(duration=100)
def generate_code(system_prompt, user_prompt, max_length):
    device = yi_coder_device
    model = yi_coder_model
    tokenizer_ = tokenizer  # Ya lo tenemos cargado

    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ]

    # Preparamos el input para el modelo
    prompt = system_prompt + "\n" + user_prompt
    model_inputs = tokenizer_(prompt, return_tensors="pt").to(device)

    with torch.no_grad():
        generated_ids = model.generate(
            model_inputs.input_ids,
            max_new_tokens=max_length,
            eos_token_id=tokenizer_.eos_token_id  
        )

    # Extraer solo la parte generada
    generated_text = tokenizer_.batch_decode(generated_ids, skip_special_tokens=True)[0]
    response = generated_text[len(prompt):].strip()

    return response

# Funci贸n para combinar b煤squeda vectorial y Yi-Coder
@gpu_decorator(duration=100)
def combined_function(user_prompt, similarity_threshold, selected_option, system_prompt, max_length):
    if selected_option == "Solo B煤squeda Vectorial":
        # Realizar b煤squeda vectorial
        search_results = vector_search(user_prompt, embedding_model, index)
        if search_results:
            # Usar el primer resultado
            content = search_results[0]['content']
            return content, None
        else:
            return "No se encontraron resultados en Pinecone.", None
    elif selected_option == "Solo Yi-Coder":
        # Generar respuesta usando Yi-Coder
        yi_coder_response = generate_code(system_prompt, user_prompt, max_length)
        return yi_coder_response, None
    elif selected_option == "Ambos (basado en umbral de similitud)":
        # Realizar b煤squeda vectorial
        search_results = vector_search(user_prompt, embedding_model, index)
        if search_results:
            top_result = search_results[0]
            if top_result['score'] >= similarity_threshold:
                content = top_result['content']
                return content, None
            else:
                yi_coder_response = generate_code(system_prompt, user_prompt, max_length)
                return yi_coder_response, None
        else:
            yi_coder_response = generate_code(system_prompt, user_prompt, max_length)
            return yi_coder_response, None
    else:
        return "Opci贸n no v谩lida.", None

# Funciones para el procesamiento de entradas y actualizaci贸n de im谩genes
def process_input(message, history, selected_option, similarity_threshold, system_prompt, max_length):
    response, image = combined_function(message, similarity_threshold, selected_option, system_prompt, max_length)
    history.append((message, response))
    return history, history, image

def update_image(image_url):
    if image_url:
        return image_url
    else:
        return None

def send_preset_question(question, history, selected_option, similarity_threshold, system_prompt, max_length):
    return process_input(question, history, selected_option, similarity_threshold, system_prompt, max_length)

# Construir y lanzar la interfaz
demo = build_interface(process_input, send_preset_question, update_image)

if __name__ == "__main__":
    demo.launch()