Spaces:
Running
on
Zero
Running
on
Zero
# app.py | |
import gradio as gr | |
from models import load_embedding_model, load_yi_coder_model | |
from pinecone_utils import connect_to_pinecone, vector_search | |
from ui import build_interface | |
from config import SIMILARITY_THRESHOLD_DEFAULT, SYSTEM_PROMPT, MAX_LENGTH_DEFAULT | |
from decorators import gpu_decorator | |
import torch | |
import spaces | |
# Cargar modelos | |
embedding_model = load_embedding_model() | |
tokenizer, yi_coder_model, yi_coder_device = load_yi_coder_model() | |
# Conectar a Pinecone | |
index = connect_to_pinecone() | |
# Funci贸n para generar c贸digo utilizando Yi-Coder | |
def generate_code(system_prompt, user_prompt, max_length): | |
device = yi_coder_device | |
model = yi_coder_model | |
tokenizer_ = tokenizer # Ya lo tenemos cargado | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": user_prompt} | |
] | |
# Preparamos el input para el modelo | |
prompt = system_prompt + "\n" + user_prompt | |
model_inputs = tokenizer_(prompt, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
generated_ids = model.generate( | |
model_inputs.input_ids, | |
max_new_tokens=max_length, | |
eos_token_id=tokenizer_.eos_token_id | |
) | |
# Extraer solo la parte generada | |
generated_text = tokenizer_.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
response = generated_text[len(prompt):].strip() | |
return response | |
# Funci贸n para combinar b煤squeda vectorial y Yi-Coder | |
def combined_function(user_prompt, similarity_threshold, selected_option, system_prompt, max_length): | |
if selected_option == "Solo B煤squeda Vectorial": | |
# Realizar b煤squeda vectorial | |
search_results = vector_search(user_prompt, embedding_model, index) | |
if search_results: | |
# Usar el primer resultado | |
content = search_results[0]['content'] | |
return content, None | |
else: | |
return "No se encontraron resultados en Pinecone.", None | |
elif selected_option == "Solo Yi-Coder": | |
# Generar respuesta usando Yi-Coder | |
yi_coder_response = generate_code(system_prompt, user_prompt, max_length) | |
return yi_coder_response, None | |
elif selected_option == "Ambos (basado en umbral de similitud)": | |
# Realizar b煤squeda vectorial | |
search_results = vector_search(user_prompt, embedding_model, index) | |
if search_results: | |
top_result = search_results[0] | |
if top_result['score'] >= similarity_threshold: | |
content = top_result['content'] | |
return content, None | |
else: | |
yi_coder_response = generate_code(system_prompt, user_prompt, max_length) | |
return yi_coder_response, None | |
else: | |
yi_coder_response = generate_code(system_prompt, user_prompt, max_length) | |
return yi_coder_response, None | |
else: | |
return "Opci贸n no v谩lida.", None | |
# Funciones para el procesamiento de entradas y actualizaci贸n de im谩genes | |
def process_input(message, history, selected_option, similarity_threshold, system_prompt, max_length): | |
response, image = combined_function(message, similarity_threshold, selected_option, system_prompt, max_length) | |
history.append((message, response)) | |
return history, history, image | |
def update_image(image_url): | |
if image_url: | |
return image_url | |
else: | |
return None | |
def send_preset_question(question, history, selected_option, similarity_threshold, system_prompt, max_length): | |
return process_input(question, history, selected_option, similarity_threshold, system_prompt, max_length) | |
# Construir y lanzar la interfaz | |
demo = build_interface(process_input, send_preset_question, update_image) | |
if __name__ == "__main__": | |
demo.launch() | |