# pinecone_utils.py import pinecone from config import PINECONE_API_KEY, PINECONE_ENVIRONMENT, INDEX_NAME, CONTEXT_FIELDS import torch # Conectar a Pinecone def connect_to_pinecone(): pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT) index = pinecone.Index(INDEX_NAME) return index # Realizar búsqueda vectorial def vector_search(query, embedding_model, index): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Generar el embedding utilizando el modelo de embeddings xq = embedding_model.encode(query, convert_to_tensor=True, device=device) # Convertir el tensor a lista xq = xq.cpu().tolist() # Realizar búsqueda vectorial en el índice de Pinecone res = index.query(vector=xq, top_k=3, include_metadata=True) if res and res['matches']: return [ { 'content': ' '.join(f"{k}: {v}" for k, v in match['metadata'].items() if k in CONTEXT_FIELDS and k != 'Tag'), 'metadata': match['metadata'], 'score': match.get('score', 0) } for match in res['matches'] if 'metadata' in match ] return []