|
from . import chinese, japanese, english, chinese_mix, korean, french, spanish |
|
from . import cleaned_text_to_sequence |
|
import copy |
|
|
|
language_module_map = {"ZH": chinese, "JP": japanese, "EN": english, 'ZH_MIX_EN': chinese_mix, 'KR': korean, |
|
'FR': french, 'SP': spanish, 'ES': spanish} |
|
|
|
|
|
def clean_text(text, language): |
|
language_module = language_module_map[language] |
|
norm_text = language_module.text_normalize(text) |
|
phones, tones, word2ph = language_module.g2p(norm_text) |
|
return norm_text, phones, tones, word2ph |
|
|
|
|
|
def clean_text_bert(text, language, device=None): |
|
language_module = language_module_map[language] |
|
norm_text = language_module.text_normalize(text) |
|
phones, tones, word2ph = language_module.g2p(norm_text) |
|
|
|
word2ph_bak = copy.deepcopy(word2ph) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert = language_module.get_bert_feature(norm_text, word2ph, device=device) |
|
|
|
return norm_text, phones, tones, word2ph_bak, bert |
|
|
|
|
|
def text_to_sequence(text, language): |
|
norm_text, phones, tones, word2ph = clean_text(text, language) |
|
return cleaned_text_to_sequence(phones, tones, language) |
|
|
|
|
|
if __name__ == "__main__": |
|
pass |