|
import pickle |
|
import os |
|
import re |
|
|
|
from . import symbols |
|
from .fr_phonemizer import cleaner as fr_cleaner |
|
from .fr_phonemizer import fr_to_ipa |
|
from transformers import AutoTokenizer |
|
|
|
|
|
def distribute_phone(n_phone, n_word): |
|
phones_per_word = [0] * n_word |
|
for task in range(n_phone): |
|
min_tasks = min(phones_per_word) |
|
min_index = phones_per_word.index(min_tasks) |
|
phones_per_word[min_index] += 1 |
|
return phones_per_word |
|
|
|
def text_normalize(text): |
|
text = fr_cleaner.french_cleaners(text) |
|
return text |
|
|
|
model_id = 'dbmdz/bert-base-french-europeana-cased' |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
def g2p(text, pad_start_end=True, tokenized=None): |
|
if tokenized is None: |
|
tokenized = tokenizer.tokenize(text) |
|
|
|
phs = [] |
|
ph_groups = [] |
|
for t in tokenized: |
|
if not t.startswith("#"): |
|
ph_groups.append([t]) |
|
else: |
|
ph_groups[-1].append(t.replace("#", "")) |
|
|
|
phones = [] |
|
tones = [] |
|
word2ph = [] |
|
|
|
for group in ph_groups: |
|
w = "".join(group) |
|
phone_len = 0 |
|
word_len = len(group) |
|
if w == '[UNK]': |
|
phone_list = ['UNK'] |
|
else: |
|
phone_list = list(filter(lambda p: p != " ", fr_to_ipa.fr2ipa(w))) |
|
|
|
for ph in phone_list: |
|
phones.append(ph) |
|
tones.append(0) |
|
phone_len += 1 |
|
aaa = distribute_phone(phone_len, word_len) |
|
word2ph += aaa |
|
|
|
|
|
|
|
if pad_start_end: |
|
phones = ["_"] + phones + ["_"] |
|
tones = [0] + tones + [0] |
|
word2ph = [1] + word2ph + [1] |
|
return phones, tones, word2ph |
|
|
|
def get_bert_feature(text, word2ph, device=None): |
|
from text import french_bert |
|
return french_bert.get_bert_feature(text, word2ph, device=device) |
|
|
|
if __name__ == "__main__": |
|
ori_text = 'Ce service gratuit est“”"" 【disponible》 en chinois 【simplifié] et autres 123' |
|
|
|
|
|
text = text_normalize(ori_text) |
|
print(text) |
|
phoneme = fr_to_ipa.fr2ipa(text) |
|
print(phoneme) |
|
|
|
|
|
from TTS.tts.utils.text.phonemizers.multi_phonemizer import MultiPhonemizer |
|
from text.cleaner_multiling import unicleaners |
|
|
|
def text_normalize(text): |
|
text = unicleaners(text, cased=True, lang='fr') |
|
return text |
|
|
|
|
|
text = text_normalize(ori_text) |
|
print(text) |
|
phonemizer = MultiPhonemizer({"fr-fr": "espeak"}) |
|
|
|
|
|
phoneme = phonemizer.phonemize(text, separator="", language='fr-fr') |
|
print(phoneme) |