|
import torch |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
import sys |
|
|
|
|
|
models = {} |
|
tokenizers = {} |
|
def get_bert_feature(text, word2ph, device=None, model_id='tohoku-nlp/bert-base-japanese-v3'): |
|
global model |
|
global tokenizer |
|
|
|
if ( |
|
sys.platform == "darwin" |
|
and torch.backends.mps.is_available() |
|
and device == "cpu" |
|
): |
|
device = "mps" |
|
if not device: |
|
device = "cuda" |
|
if model_id not in models: |
|
model = AutoModelForMaskedLM.from_pretrained(model_id).to( |
|
device |
|
) |
|
models[model_id] = model |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizers[model_id] = tokenizer |
|
else: |
|
model = models[model_id] |
|
tokenizer = tokenizers[model_id] |
|
|
|
|
|
with torch.no_grad(): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
tokenized = tokenizer.tokenize(text) |
|
for i in inputs: |
|
inputs[i] = inputs[i].to(device) |
|
res = model(**inputs, output_hidden_states=True) |
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu() |
|
|
|
assert inputs["input_ids"].shape[-1] == len(word2ph), f"{inputs['input_ids'].shape[-1]}/{len(word2ph)}" |
|
word2phone = word2ph |
|
phone_level_feature = [] |
|
for i in range(len(word2phone)): |
|
repeat_feature = res[i].repeat(word2phone[i], 1) |
|
phone_level_feature.append(repeat_feature) |
|
|
|
phone_level_feature = torch.cat(phone_level_feature, dim=0) |
|
|
|
return phone_level_feature.T |
|
|