Spaces:
Sleeping
Sleeping
CHEONMA010
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,65 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from PIL import Image
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
import sys
|
6 |
-
import os
|
7 |
-
|
8 |
-
# Add the `scripts/` folder to the system path
|
9 |
-
sys.path.append(os.path.join(os.path.dirname(__file__), 'scripts'))
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
# Path to the pretrained model
|
15 |
-
model_path = os.path.join(os.path.dirname(__file__), 'models', 'RRDB_ESRGAN_x4.pth')
|
16 |
-
|
17 |
-
# Load ESRGAN model
|
18 |
-
device = torch.device('cpu') #'cuda' if using GPU
|
19 |
-
model = arch.RRDBNet(3, 3, 64, 23, gc=32)
|
20 |
-
model.load_state_dict(torch.load(model_path, map_location=device), strict=True)
|
21 |
-
model.eval()
|
22 |
-
model = model.to(device)
|
23 |
-
|
24 |
-
|
25 |
-
def upscale_image(image):
|
26 |
-
img = np.array(image) / 255.0
|
27 |
-
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
|
28 |
-
img_LR = img.unsqueeze(0).to(device)
|
29 |
-
|
30 |
-
with torch.no_grad():
|
31 |
-
output = model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
32 |
-
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
33 |
-
output = (output * 255.0).round().astype(np.uint8)
|
34 |
-
return Image.fromarray(output)
|
35 |
-
|
36 |
-
# Gradio interface
|
37 |
-
def gradio_interface(image):
|
38 |
-
try:
|
39 |
-
|
40 |
-
if image is None:
|
41 |
-
raise ValueError("No image uploaded. Please upload an image to upscale.")
|
42 |
-
|
43 |
-
|
44 |
-
upscaled_image = upscale_image(image)
|
45 |
-
original_size = image.size
|
46 |
-
upscaled_size = upscaled_image.size
|
47 |
-
|
48 |
-
return image, upscaled_image, f"Original Size: {original_size[0]}x{original_size[1]}", f"Upscaled Size: {upscaled_size[0]}x{upscaled_size[1]}"
|
49 |
-
|
50 |
-
except Exception as e:
|
51 |
-
|
52 |
-
return None, None, "Error", str(e)
|
53 |
-
|
54 |
-
|
55 |
-
gr_interface = gr.Interface(
|
56 |
-
fn=gradio_interface,
|
57 |
-
inputs=gr.Image(type="pil"),
|
58 |
-
outputs=[gr.Image(), gr.Image(), gr.Text(), gr.Text()],
|
59 |
-
title="ESRGAN Image Upscaler",
|
60 |
-
description="Upload an image to upscale it using ESRGAN."
|
61 |
-
)
|
62 |
-
|
63 |
-
if __name__ == '__main__':
|
64 |
-
|
65 |
-
gr_interface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Add the `scripts/` folder to the system path
|
9 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), 'scripts'))
|
10 |
+
import RRDBNet_arch as arch
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# Path to the pretrained model
|
15 |
+
model_path = os.path.join(os.path.dirname(__file__), 'models', 'RRDB_ESRGAN_x4.pth')
|
16 |
+
|
17 |
+
# Load ESRGAN model
|
18 |
+
device = torch.device('cpu') #'cuda' if using GPU
|
19 |
+
model = arch.RRDBNet(3, 3, 64, 23, gc=32)
|
20 |
+
model.load_state_dict(torch.load(model_path, map_location=device), strict=True)
|
21 |
+
model.eval()
|
22 |
+
model = model.to(device)
|
23 |
+
|
24 |
+
|
25 |
+
def upscale_image(image):
|
26 |
+
img = np.array(image) / 255.0
|
27 |
+
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
|
28 |
+
img_LR = img.unsqueeze(0).to(device)
|
29 |
+
|
30 |
+
with torch.no_grad():
|
31 |
+
output = model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
32 |
+
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
|
33 |
+
output = (output * 255.0).round().astype(np.uint8)
|
34 |
+
return Image.fromarray(output)
|
35 |
+
|
36 |
+
# Gradio interface
|
37 |
+
def gradio_interface(image):
|
38 |
+
try:
|
39 |
+
|
40 |
+
if image is None:
|
41 |
+
raise ValueError("No image uploaded. Please upload an image to upscale.")
|
42 |
+
|
43 |
+
|
44 |
+
upscaled_image = upscale_image(image)
|
45 |
+
original_size = image.size
|
46 |
+
upscaled_size = upscaled_image.size
|
47 |
+
|
48 |
+
return image, upscaled_image, f"Original Size: {original_size[0]}x{original_size[1]}", f"Upscaled Size: {upscaled_size[0]}x{upscaled_size[1]}"
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
|
52 |
+
return None, None, "Error", str(e)
|
53 |
+
|
54 |
+
|
55 |
+
gr_interface = gr.Interface(
|
56 |
+
fn=gradio_interface,
|
57 |
+
inputs=gr.Image(type="pil"),
|
58 |
+
outputs=[gr.Image(), gr.Image(), gr.Text(), gr.Text()],
|
59 |
+
title="ESRGAN Image Upscaler",
|
60 |
+
description="Upload an image to upscale it using ESRGAN."
|
61 |
+
)
|
62 |
+
|
63 |
+
if __name__ == '__main__':
|
64 |
+
|
65 |
+
gr_interface.launch()
|