Spaces:
Running
Running
File size: 11,740 Bytes
dd12453 c6bf1a7 dd12453 26a9ef8 dd12453 afdbdc8 fec6d6e a98e515 dd12453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
from html import escape
from io import BytesIO
import base64
from multiprocessing.dummy import Pool
from PIL import Image, ImageDraw
import streamlit as st
import pandas as pd
import numpy as np
import torch
# from transformers import CLIPProcessor, CLIPModel
# from transformers import OwlViTProcessor, OwlViTForObjectDetection
# from transformers.image_utils import ImageFeatureExtractionMixin
import pickle as pkl
# sketches
from streamlit_drawable_canvas import st_canvas
from PIL import Image, ImageOps
from torchvision import transforms
# model
import os
# No reconoce la carpeta que esta dos niveles abajo src
from src.model_LN_prompt import Model
from src.options import opts
from datasets import load_dataset
DEBUG = False
if DEBUG:
MODEL = "vit-base-patch32"
else:
MODEL = "vit-large-patch14-336"
CLIP_MODEL = f"openai/clip-{MODEL}"
OWL_MODEL = f"google/owlvit-base-patch32"
if not DEBUG and torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
HEIGHT = 350
N_RESULTS = 5
from huggingface_hub import hf_hub_download,login
token = os.getenv("HUGGINGFACE_TOKEN")
# Autentica usando el token
login(token=token)
color = st.get_option("theme.primaryColor")
if color is None:
color = (0, 255, 0)
else:
color = tuple(int(color.lstrip("#")[i: i + 2], 16) for i in (0, 2, 4))
@st.cache_resource
def load():
path_images = "data/doc_explore/DocExplore_images/"
path_model = hf_hub_download(repo_id="CHSTR/DocExplore", filename="epoch=16-mAP=0.66_triplet.ckpt")#"models/epoch=16-mAP=0.66_triplet.ckpt"
model = Model()
model_checkpoint = torch.load(path_model, map_location=device) # 'model_60k_images_073.ckpt' -> modelo entrenado con 60k imagenes sin pidinet
model.load_state_dict(model_checkpoint['state_dict']) # 'modified_model_083.ckpt' -> modelo entrenado con 60k imagenes con pidinet
model.eval() # 'original_model_083.ckpt' -> modelo original entrenado con 60k imagenes con pidinet
print("Modelo cargado exitosamente")
embeddings_file_1 = hf_hub_download(repo_id="CHSTR/DocExplore", filename="dino_flicker_docexplore_groundingDINO.pkl")
embeddings_file_0 = hf_hub_download(repo_id="CHSTR/DocExplore", filename="docexp_embeddings.pkl")
embeddings = {
0: pkl.load(open(embeddings_file_0, "rb")),
1: pkl.load(open(embeddings_file_1, "rb"))
}
# embeddings = {
# 0: pkl.load(open("docexp_embeddings.pkl", "rb")),
# 1: pkl.load(open("dino_flicker_docexplore_groundingDINO.pkl", "rb"))
# }
# Actualizar los paths de las imágenes en los embeddings
#for i in range(len(embeddings[0])):
# print(embeddings[0][i])
#embeddings[0][i] = (embeddings[0][i][0], path_images + "/".join(embeddings[0][i][1].split("/")[:-3]))
#for i in range(len(embeddings[1])):
# print(embeddings[1][i])
#embeddings[1][i] = (embeddings[1][i][0], path_images + "/".join(embeddings[1][i][1].split("/")[:-3]))
return model, path_images, embeddings
print("Cargando modelos...")
model, path_images, embeddings = load()
source = {0: "\nDocExplore SAM", 1: "\nDocExplore GroundingDINO"}
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 5)
dataset_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def compute_text_embeddings(sketch):
with torch.no_grad():
sketch_feat = model(sketch.to(device), dtype='sketch')
return sketch_feat
# inputs = clip_processor(text=list_of_strings, return_tensors="pt", padding=True).to(
# device
# )
# with torch.no_grad():
# result = clip_model.get_text_features(**inputs).detach().cpu().numpy()
# return result / np.linalg.norm(result, axis=1, keepdims=True)
#return torch.randn(1, 768)
def image_search(query, corpus, n_results=N_RESULTS):
query_embedding = compute_text_embeddings(query)
corpus_id = 0 if corpus == "DocExplore SAM" else 1
image_features = torch.tensor([item[0] for item in embeddings[corpus_id]]).to(device)
bbox_of_images = torch.tensor([item[1] for item in embeddings[corpus_id]]).to(device)
label_of_images = torch.tensor([item[2] for item in embeddings[corpus_id]]).to(device)
dot_product = (image_features @ query_embedding.T)[:, 0]
_, max_indices = torch.topk(dot_product, n_results, dim=0, largest=True, sorted=True)
return [
(
path_images + "page" + str(i) + ".jpg",
)
for i in label_of_images[max_indices].cpu().numpy().tolist()
], bbox_of_images[max_indices], dot_product[max_indices]
def make_square(img, fill_color=(255, 255, 255)):
x, y = img.size
size = max(x, y)
new_img = Image.new("RGB", (x, y), fill_color)
new_img.paste(img)
return new_img, x, y
@st.cache_data
def get_images(paths):
def process_image(path):
return make_square(Image.open(path))
processed = Pool(N_RESULTS).map(process_image, paths)
imgs, xs, ys = [], [], []
for img, x, y in processed:
imgs.append(img)
xs.append(x)
ys.append(y)
return imgs, xs, ys
def keep_best_boxes(boxes, scores, score_threshold=0.1, max_iou=0.8):
candidates = []
for box, score in zip(boxes, scores):
box = [round(i, 0) for i in box.tolist()]
if score >= score_threshold:
candidates.append((box, float(score)))
to_ignore = set()
for i in range(len(candidates) - 1):
if i in to_ignore:
continue
for j in range(i + 1, len(candidates)):
if j in to_ignore:
continue
xmin1, ymin1, xmax1, ymax1 = candidates[i][0]
xmin2, ymin2, xmax2, ymax2 = candidates[j][0]
if xmax1 < xmin2 or xmax2 < xmin1 or ymax1 < ymin2 or ymax2 < ymin1:
continue
else:
xmin_inter, xmax_inter = sorted(
[xmin1, xmax1, xmin2, xmax2])[1:3]
ymin_inter, ymax_inter = sorted(
[ymin1, ymax1, ymin2, ymax2])[1:3]
area_inter = (xmax_inter - xmin_inter) * \
(ymax_inter - ymin_inter)
area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
iou = area_inter / (area1 + area2 - area_inter)
if iou > max_iou:
if candidates[i][1] > candidates[j][1]:
to_ignore.add(j)
else:
to_ignore.add(i)
break
else:
if area_inter / area1 > 0.9:
if candidates[i][1] < 1.1 * candidates[j][1]:
to_ignore.add(i)
if area_inter / area2 > 0.9:
if 1.1 * candidates[i][1] > candidates[j][1]:
to_ignore.add(j)
return [candidates[i][0] for i in range(len(candidates)) if i not in to_ignore]
def convert_pil_to_base64(image):
img_buffer = BytesIO()
image.save(img_buffer, format="JPEG")
byte_data = img_buffer.getvalue()
base64_str = base64.b64encode(byte_data)
return base64_str
def draw_reshape_encode(img, boxes, x, y):
boxes = [boxes.tolist()]
image = img.copy()
draw = ImageDraw.Draw(image)
new_x, new_y = int(x * HEIGHT / y), HEIGHT
for box in boxes:
print("box:", box)
draw.rectangle(
[(box[0], box[1]), (box[2], box[3])], # (x_min, y_min, x_max, y_max)
outline=color, # Box color
width=10 # Box width
)
#if x > y:
# image = image.crop((0, (x - y) / 2, x, x - (x - y) / 2))
#else:
# image = image.crop(((y - x) / 2, 0, y - (y - x) / 2, y))
return convert_pil_to_base64(image.resize((new_x, new_y)))
def get_html(url_list, encoded_images):
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
for i in range(len(url_list)):
title, encoded = url_list[i][0], encoded_images[i]
html = (
html
+ f"<img title='{escape(title)}' style='height: {HEIGHT}px; margin: 1px' src='data:image/jpeg;base64,{encoded.decode()}'>"
)
html += "</div>"
return html
description = """
# Sketch-based Detection
This app retrieves images from the [DocExplore](https://www.docexplore.eu/?lang=en) dataset based on a sketch query.
**Tip 1**: you can draw a sketch in the canvas.
**Tip 2**: you can change the size of the stroke with the slider.
The model utilized in this application is a DINOv2, which was trained in a self-supervised manner on the Flickr25k dataset.
"""
div_style = {
"display": "flex",
"justify-content": "center",
"flex-wrap": "wrap",
}
def main():
st.markdown(
"""
<style>
.block-container{
max-width: 1600px;
}
div.row-widget > div{
flex-direction: row;
display: flex;
justify-content: center;
}
div.row-widget.stRadio > div > label{
margin-left: 5px;
margin-right: 5px;
}
.row-widget {
margin-top: -25px;
}
section > div:first-child {
padding-top: 30px;
}
div.appview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
.stMarkdown {
display: grid;
place-items: center;
}
</style>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown(description)
st.title("One-Shot Detection")
# Create two main columns
left_col, right_col = st.columns([0.2, 0.8]) # Adjust the weights as needed
with left_col:
# Canvas for drawing
canvas_result = st_canvas(
background_color="#eee",
stroke_width=stroke_width,
update_streamlit=True,
height=300,
width=300,
key="color_annotation_app",
)
# Input controls
query = [0]
corpus = st.radio("", ["DocExplore SAM", "DocExplore GroundingDINO"], index=0)
# score_threshold = st.slider(
# "Score threshold", min_value=0.01, max_value=1.0, value=0.5, step=0.01
# )
with right_col:
if canvas_result.image_data is not None:
draw = Image.fromarray(canvas_result.image_data.astype("uint8"))
draw = ImageOps.pad(draw.convert("RGB"), size=(224, 224))
draw.save("draw.jpg")
draw_tensor = transforms.ToTensor()(draw)
draw_tensor = transforms.Resize((224, 224))(draw_tensor)
draw_tensor = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)(draw_tensor)
draw_tensor = draw_tensor.unsqueeze(0)
else:
return
if len(query) > 0:
retrieved, bbox_of_images, dot_product = image_search(draw_tensor, corpus)
imgs, xs, ys = get_images([x[0] for x in retrieved])
encoded_images = []
for image_idx in range(len(imgs)):
img0, x, y = imgs[image_idx], xs[image_idx], ys[image_idx]
encoded_images.append(draw_reshape_encode(img0, bbox_of_images[image_idx], x, y))
st.markdown(get_html(retrieved, encoded_images), unsafe_allow_html=True)
if __name__ == "__main__":
main()
|