File size: 11,844 Bytes
dd12453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6bf1a7
dd12453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6bf1a7
33c9ff7
c6bf1a7
 
 
 
dd12453
 
afdbdc8
fec6d6e
a98e515
 
 
dd12453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
from html import escape
from io import BytesIO
import base64
from multiprocessing.dummy import Pool
from PIL import Image, ImageDraw
import streamlit as st
import pandas as pd
import numpy as np
import torch
# from transformers import CLIPProcessor, CLIPModel
# from transformers import OwlViTProcessor, OwlViTForObjectDetection
# from transformers.image_utils import ImageFeatureExtractionMixin

import pickle as pkl

# sketches
from streamlit_drawable_canvas import st_canvas
from PIL import Image, ImageOps
from torchvision import transforms


# model
import os
# No reconoce la carpeta que esta dos niveles abajo src
from src.model_LN_prompt import Model
from src.options import opts
from datasets import load_dataset


DEBUG = False
if DEBUG:
    MODEL = "vit-base-patch32"
else:
    MODEL = "vit-large-patch14-336"
CLIP_MODEL = f"openai/clip-{MODEL}"
OWL_MODEL = f"google/owlvit-base-patch32"

if not DEBUG and torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

HEIGHT = 350
N_RESULTS = 5

from huggingface_hub import hf_hub_download,login 

token = os.getenv("HUGGINGFACE_TOKEN")

# Autentica usando el token
login(token=token)


color = st.get_option("theme.primaryColor")
if color is None:
    color = (0, 255, 0)
else:
    color = tuple(int(color.lstrip("#")[i: i + 2], 16) for i in (0, 2, 4))

@st.cache_resource
def load():
    # Descargamos el dataset
    dataset = load_dataset("CHSTR/docexplore")
    local_dir = "./"
    dataset.save_to_disk(local_dir)

    path_images = 'data/'
    path_model = hf_hub_download(repo_id="CHSTR/DocExplore", filename="epoch=16-mAP=0.66_triplet.ckpt")#"models/epoch=16-mAP=0.66_triplet.ckpt"

    model = Model()
    model_checkpoint = torch.load(path_model, map_location=device) # 'model_60k_images_073.ckpt' -> modelo entrenado con 60k imagenes sin pidinet
    model.load_state_dict(model_checkpoint['state_dict'])                # 'modified_model_083.ckpt' -> modelo entrenado con 60k imagenes con pidinet
    model.eval()                                                         # 'original_model_083.ckpt' -> modelo original entrenado con 60k imagenes con pidinet
    print("Modelo cargado exitosamente")

    embeddings_file_1 = hf_hub_download(repo_id="CHSTR/DocExplore", filename="dino_flicker_docexplore_groundingDINO.pkl")
    embeddings_file_0 = hf_hub_download(repo_id="CHSTR/DocExplore", filename="docexp_embeddings.pkl")

    embeddings = {
        0: pkl.load(open(embeddings_file_0, "rb")),
        1: pkl.load(open(embeddings_file_1, "rb"))
    }

    # embeddings = {
    #     0: pkl.load(open("docexp_embeddings.pkl", "rb")),
    #     1: pkl.load(open("dino_flicker_docexplore_groundingDINO.pkl", "rb"))
    # }

    # Actualizar los paths de las imágenes en los embeddings
    #for i in range(len(embeddings[0])):
    #    print(embeddings[0][i])
        #embeddings[0][i] = (embeddings[0][i][0], path_images + "/".join(embeddings[0][i][1].split("/")[:-3]))

    #for i in range(len(embeddings[1])):
    #    print(embeddings[1][i])
        #embeddings[1][i] = (embeddings[1][i][0], path_images + "/".join(embeddings[1][i][1].split("/")[:-3]))

    return model, path_images, embeddings

print("Cargando modelos...")
model, path_images, embeddings = load()
source = {0: "\nDocExplore SAM", 1: "\nDocExplore GroundingDINO"}

stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 5)

dataset_transforms = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])


def compute_text_embeddings(sketch):
    with torch.no_grad():
        sketch_feat = model(sketch.to(device), dtype='sketch')
    return sketch_feat
    # inputs = clip_processor(text=list_of_strings, return_tensors="pt", padding=True).to(
    #     device
    # )
    # with torch.no_grad():
    #     result = clip_model.get_text_features(**inputs).detach().cpu().numpy()
    # return result / np.linalg.norm(result, axis=1, keepdims=True)
    #return torch.randn(1, 768)


def image_search(query, corpus, n_results=N_RESULTS):
    query_embedding = compute_text_embeddings(query)
    corpus_id = 0 if corpus == "DocExplore SAM" else 1
    image_features = torch.tensor([item[0] for item in embeddings[corpus_id]]).to(device)
    bbox_of_images = torch.tensor([item[1] for item in embeddings[corpus_id]]).to(device)
    label_of_images = torch.tensor([item[2] for item in embeddings[corpus_id]]).to(device)
    dot_product = (image_features @ query_embedding.T)[:, 0]
    _, max_indices = torch.topk(dot_product, n_results, dim=0, largest=True, sorted=True)

    return [
        (
           path_images +  "page" + str(i) + ".jpg",
        )
        for i in label_of_images[max_indices].cpu().numpy().tolist()
    ], bbox_of_images[max_indices], dot_product[max_indices]


def make_square(img, fill_color=(255, 255, 255)):
    x, y = img.size
    size = max(x, y)
    new_img = Image.new("RGB", (x, y), fill_color)
    new_img.paste(img)
    return new_img, x, y

@st.cache_data
def get_images(paths):
    def process_image(path):
        return make_square(Image.open(path))

    processed = Pool(N_RESULTS).map(process_image, paths)
    imgs, xs, ys = [], [], []
    for img, x, y in processed:
        imgs.append(img)
        xs.append(x)
        ys.append(y)
    return imgs, xs, ys


def keep_best_boxes(boxes, scores, score_threshold=0.1, max_iou=0.8):
    candidates = []
    for box, score in zip(boxes, scores):
        box = [round(i, 0) for i in box.tolist()]
        if score >= score_threshold:
            candidates.append((box, float(score)))

    to_ignore = set()
    for i in range(len(candidates) - 1):
        if i in to_ignore:
            continue
        for j in range(i + 1, len(candidates)):
            if j in to_ignore:
                continue
            xmin1, ymin1, xmax1, ymax1 = candidates[i][0]
            xmin2, ymin2, xmax2, ymax2 = candidates[j][0]
            if xmax1 < xmin2 or xmax2 < xmin1 or ymax1 < ymin2 or ymax2 < ymin1:
                continue
            else:
                xmin_inter, xmax_inter = sorted(
                    [xmin1, xmax1, xmin2, xmax2])[1:3]
                ymin_inter, ymax_inter = sorted(
                    [ymin1, ymax1, ymin2, ymax2])[1:3]
                area_inter = (xmax_inter - xmin_inter) * \
                    (ymax_inter - ymin_inter)
                area1 = (xmax1 - xmin1) * (ymax1 - ymin1)
                area2 = (xmax2 - xmin2) * (ymax2 - ymin2)
                iou = area_inter / (area1 + area2 - area_inter)
                if iou > max_iou:
                    if candidates[i][1] > candidates[j][1]:
                        to_ignore.add(j)
                    else:
                        to_ignore.add(i)
                        break
                else:
                    if area_inter / area1 > 0.9:
                        if candidates[i][1] < 1.1 * candidates[j][1]:
                            to_ignore.add(i)
                    if area_inter / area2 > 0.9:
                        if 1.1 * candidates[i][1] > candidates[j][1]:
                            to_ignore.add(j)
    return [candidates[i][0] for i in range(len(candidates)) if i not in to_ignore]


def convert_pil_to_base64(image):
    img_buffer = BytesIO()
    image.save(img_buffer, format="JPEG")
    byte_data = img_buffer.getvalue()
    base64_str = base64.b64encode(byte_data)
    return base64_str


def draw_reshape_encode(img, boxes, x, y):
    boxes = [boxes.tolist()]
    image = img.copy()
    draw = ImageDraw.Draw(image)
    new_x, new_y = int(x * HEIGHT / y), HEIGHT
    for box in boxes:
        print("box:", box)
        draw.rectangle(
            [(box[0], box[1]), (box[2], box[3])],  # (x_min, y_min, x_max, y_max)
            outline=color,  # Box color
            width=10  # Box width
        )
    #if x > y:
    #    image = image.crop((0, (x - y) / 2, x, x - (x - y) / 2))
    #else:
    #    image = image.crop(((y - x) / 2, 0, y - (y - x) / 2, y))
    return convert_pil_to_base64(image.resize((new_x, new_y)))


def get_html(url_list, encoded_images):
    html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
    for i in range(len(url_list)):
        title, encoded = url_list[i][0], encoded_images[i]
        html = (
            html
            + f"<img title='{escape(title)}' style='height: {HEIGHT}px; margin: 1px' src='data:image/jpeg;base64,{encoded.decode()}'>"
        )
    html += "</div>"
    return html


description = """
#  Sketch-based Detection
This app retrieves images from the [DocExplore](https://www.docexplore.eu/?lang=en) dataset based on a sketch query.
**Tip 1**: you can draw a sketch in the canvas.
**Tip 2**: you can change the size of the stroke with the slider.
The model utilized in this application is a DINOv2, which was trained in a self-supervised manner on the Flickr25k dataset.
"""

div_style = {
    "display": "flex",
    "justify-content": "center",
    "flex-wrap": "wrap",
}


def main():
    st.markdown(
        """
        <style>
        .block-container{
            max-width: 1600px;
        }
        div.row-widget > div{
            flex-direction: row;
            display: flex;
            justify-content: center;
        }
        div.row-widget.stRadio > div > label{
            margin-left: 5px;
            margin-right: 5px;
        }
        .row-widget {
            margin-top: -25px;
        }
        section > div:first-child {
            padding-top: 30px;
        }
        div.appview-container > section:first-child{
            max-width: 320px;
        }
        #MainMenu {
            visibility: hidden;
        }
        .stMarkdown {
            display: grid;
            place-items: center;
        }
        </style>
        """,
        unsafe_allow_html=True,
    )
    st.sidebar.markdown(description)

    st.title("One-Shot Detection")

    # Create two main columns
    left_col, right_col = st.columns([0.2, 0.8])  # Adjust the weights as needed

    with left_col:
        # Canvas for drawing
        canvas_result = st_canvas(
            background_color="#eee",
            stroke_width=stroke_width,
            update_streamlit=True,
            height=300,
            width=300,
            key="color_annotation_app",
        )

        # Input controls
        query = [0]
        corpus = st.radio("", ["DocExplore SAM", "DocExplore GroundingDINO"], index=0)
        # score_threshold = st.slider(
        #     "Score threshold", min_value=0.01, max_value=1.0, value=0.5, step=0.01
        # )

    with right_col:
        if canvas_result.image_data is not None:
            draw = Image.fromarray(canvas_result.image_data.astype("uint8"))
            draw = ImageOps.pad(draw.convert("RGB"), size=(224, 224))
            draw.save("draw.jpg")

            draw_tensor = transforms.ToTensor()(draw)
            draw_tensor = transforms.Resize((224, 224))(draw_tensor)
            draw_tensor = transforms.Normalize(
                mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
            )(draw_tensor)
            draw_tensor = draw_tensor.unsqueeze(0)
        else:
            return

        if len(query) > 0:
            retrieved, bbox_of_images, dot_product = image_search(draw_tensor, corpus)
            imgs, xs, ys = get_images([x[0] for x in retrieved])
            encoded_images = []
            for image_idx in range(len(imgs)):
                img0, x, y = imgs[image_idx], xs[image_idx], ys[image_idx]
                encoded_images.append(draw_reshape_encode(img0, bbox_of_images[image_idx], x, y))
            st.markdown(get_html(retrieved, encoded_images), unsafe_allow_html=True)

if __name__ == "__main__":
    main()