Spaces:
Sleeping
Sleeping
File size: 15,138 Bytes
265ae36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
import argparse
import gc
import logging
import sys
import time
from typing import List, Optional
from cuml.linear_model import LogisticRegression
import torch
import torch.backends.cudnn as cudnn
import torch.distributed
from torch import nn
from torch.utils.data import TensorDataset
from torchmetrics import MetricTracker
from dinov2.data import make_dataset
from dinov2.data.transforms import make_classification_eval_transform
from dinov2.distributed import get_global_rank, get_global_size
from dinov2.eval.metrics import MetricType, build_metric
from dinov2.eval.setup import get_args_parser as get_setup_args_parser
from dinov2.eval.setup import setup_and_build_model
from dinov2.eval.utils import evaluate, extract_features
from dinov2.utils.dtype import as_torch_dtype
logger = logging.getLogger("dinov2")
DEFAULT_MAX_ITER = 1_000
C_POWER_RANGE = torch.linspace(-6, 5, 45)
_CPU_DEVICE = torch.device("cpu")
def get_args_parser(
description: Optional[str] = None,
parents: Optional[List[argparse.ArgumentParser]] = None,
add_help: bool = True,
):
parents = parents or []
setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
parents = [setup_args_parser]
parser = argparse.ArgumentParser(
description=description,
parents=parents,
add_help=add_help,
)
parser.add_argument(
"--train-dataset",
dest="train_dataset_str",
type=str,
help="Training dataset",
)
parser.add_argument(
"--val-dataset",
dest="val_dataset_str",
type=str,
help="Validation dataset",
)
parser.add_argument(
"--finetune-dataset-str",
dest="finetune_dataset_str",
type=str,
help="Fine-tuning dataset",
)
parser.add_argument(
"--finetune-on-val",
action="store_true",
help="If there is no finetune dataset, whether to choose the "
"hyperparameters on the val set instead of 10%% of the train dataset",
)
parser.add_argument(
"--metric-type",
type=MetricType,
choices=list(MetricType),
help="Metric type",
)
parser.add_argument(
"--train-features-device",
type=str,
help="Device to gather train features (cpu, cuda, cuda:0, etc.), default: %(default)s",
)
parser.add_argument(
"--train-dtype",
type=str,
help="Data type to convert the train features to (default: %(default)s)",
)
parser.add_argument(
"--max-train-iters",
type=int,
help="Maximum number of train iterations (default: %(default)s)",
)
parser.set_defaults(
train_dataset_str="ImageNet:split=TRAIN",
val_dataset_str="ImageNet:split=VAL",
finetune_dataset_str=None,
metric_type=MetricType.MEAN_ACCURACY,
train_features_device="cpu",
train_dtype="float64",
max_train_iters=DEFAULT_MAX_ITER,
finetune_on_val=False,
)
return parser
class LogRegModule(nn.Module):
def __init__(
self,
C,
max_iter=DEFAULT_MAX_ITER,
dtype=torch.float64,
device=_CPU_DEVICE,
):
super().__init__()
self.dtype = dtype
self.device = device
self.estimator = LogisticRegression(
penalty="l2",
C=C,
max_iter=max_iter,
output_type="numpy",
tol=1e-12,
linesearch_max_iter=50,
)
def forward(self, samples, targets):
samples_device = samples.device
samples = samples.to(dtype=self.dtype, device=self.device)
if self.device == _CPU_DEVICE:
samples = samples.numpy()
probas = self.estimator.predict_proba(samples)
return {"preds": torch.from_numpy(probas).to(samples_device), "target": targets}
def fit(self, train_features, train_labels):
train_features = train_features.to(dtype=self.dtype, device=self.device)
train_labels = train_labels.to(dtype=self.dtype, device=self.device)
if self.device == _CPU_DEVICE:
# both cuML and sklearn only work with numpy arrays on CPU
train_features = train_features.numpy()
train_labels = train_labels.numpy()
self.estimator.fit(train_features, train_labels)
def evaluate_model(*, logreg_model, logreg_metric, test_data_loader, device):
postprocessors = {"metrics": logreg_model}
metrics = {"metrics": logreg_metric}
return evaluate(nn.Identity(), test_data_loader, postprocessors, metrics, device)
def train_for_C(*, C, max_iter, train_features, train_labels, dtype=torch.float64, device=_CPU_DEVICE):
logreg_model = LogRegModule(C, max_iter=max_iter, dtype=dtype, device=device)
logreg_model.fit(train_features, train_labels)
return logreg_model
def train_and_evaluate(
*,
C,
max_iter,
train_features,
train_labels,
logreg_metric,
test_data_loader,
train_dtype=torch.float64,
train_features_device,
eval_device,
):
logreg_model = train_for_C(
C=C,
max_iter=max_iter,
train_features=train_features,
train_labels=train_labels,
dtype=train_dtype,
device=train_features_device,
)
return evaluate_model(
logreg_model=logreg_model,
logreg_metric=logreg_metric,
test_data_loader=test_data_loader,
device=eval_device,
)
def sweep_C_values(
*,
train_features,
train_labels,
test_data_loader,
metric_type,
num_classes,
train_dtype=torch.float64,
train_features_device=_CPU_DEVICE,
max_train_iters=DEFAULT_MAX_ITER,
):
if metric_type == MetricType.PER_CLASS_ACCURACY:
# If we want to output per-class accuracy, we select the hyperparameters with mean per class
metric_type = MetricType.MEAN_PER_CLASS_ACCURACY
logreg_metric = build_metric(metric_type, num_classes=num_classes)
metric_tracker = MetricTracker(logreg_metric, maximize=True)
ALL_C = 10**C_POWER_RANGE
logreg_models = {}
train_features = train_features.to(dtype=train_dtype, device=train_features_device)
train_labels = train_labels.to(device=train_features_device)
for i in range(get_global_rank(), len(ALL_C), get_global_size()):
C = ALL_C[i].item()
logger.info(
f"Training for C = {C:.5f}, dtype={train_dtype}, "
f"features: {train_features.shape}, {train_features.dtype}, "
f"labels: {train_labels.shape}, {train_labels.dtype}"
)
logreg_models[C] = train_for_C(
C=C,
max_iter=max_train_iters,
train_features=train_features,
train_labels=train_labels,
dtype=train_dtype,
device=train_features_device,
)
gather_list = [None for _ in range(get_global_size())]
torch.distributed.all_gather_object(gather_list, logreg_models)
logreg_models_gathered = {}
for logreg_dict in gather_list:
logreg_models_gathered.update(logreg_dict)
for i in range(len(ALL_C)):
metric_tracker.increment()
C = ALL_C[i].item()
evals = evaluate_model(
logreg_model=logreg_models_gathered[C],
logreg_metric=metric_tracker,
test_data_loader=test_data_loader,
device=torch.cuda.current_device(),
)
logger.info(f"Trained for C = {C:.5f}, accuracies = {evals}")
best_stats, which_epoch = metric_tracker.best_metric(return_step=True)
best_stats_100 = {k: 100.0 * v for k, v in best_stats.items()}
if which_epoch["top-1"] == i:
best_C = C
logger.info(f"Sweep best {best_stats_100}, best C = {best_C:.6f}")
return best_stats, best_C
def eval_log_regression(
*,
model,
train_dataset,
val_dataset,
finetune_dataset,
metric_type,
batch_size,
num_workers,
finetune_on_val=False,
train_dtype=torch.float64,
train_features_device=_CPU_DEVICE,
max_train_iters=DEFAULT_MAX_ITER,
):
"""
Implements the "standard" process for log regression evaluation:
The value of C is chosen by training on train_dataset and evaluating on
finetune_dataset. Then, the final model is trained on a concatenation of
train_dataset and finetune_dataset, and is evaluated on val_dataset.
If there is no finetune_dataset, the value of C is the one that yields
the best results on a random 10% subset of the train dataset
"""
start = time.time()
train_features, train_labels = extract_features(
model, train_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
)
val_features, val_labels = extract_features(
model, val_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
)
val_data_loader = torch.utils.data.DataLoader(
TensorDataset(val_features, val_labels),
batch_size=batch_size,
drop_last=False,
num_workers=0,
persistent_workers=False,
)
if finetune_dataset is None and finetune_on_val:
logger.info("Choosing hyperparameters on the val dataset")
finetune_features, finetune_labels = val_features, val_labels
elif finetune_dataset is None and not finetune_on_val:
logger.info("Choosing hyperparameters on 10% of the train dataset")
torch.manual_seed(0)
indices = torch.randperm(len(train_features), device=train_features.device)
finetune_index = indices[: len(train_features) // 10]
train_index = indices[len(train_features) // 10 :]
finetune_features, finetune_labels = train_features[finetune_index], train_labels[finetune_index]
train_features, train_labels = train_features[train_index], train_labels[train_index]
else:
logger.info("Choosing hyperparameters on the finetune dataset")
finetune_features, finetune_labels = extract_features(
model, finetune_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
)
# release the model - free GPU memory
del model
gc.collect()
torch.cuda.empty_cache()
finetune_data_loader = torch.utils.data.DataLoader(
TensorDataset(finetune_features, finetune_labels),
batch_size=batch_size,
drop_last=False,
)
if len(train_labels.shape) > 1:
num_classes = train_labels.shape[1]
else:
num_classes = train_labels.max() + 1
logger.info("Using cuML for logistic regression")
best_stats, best_C = sweep_C_values(
train_features=train_features,
train_labels=train_labels,
test_data_loader=finetune_data_loader,
metric_type=metric_type,
num_classes=num_classes,
train_dtype=train_dtype,
train_features_device=train_features_device,
max_train_iters=max_train_iters,
)
if not finetune_on_val:
logger.info("Best parameter found, concatenating features")
train_features = torch.cat((train_features, finetune_features))
train_labels = torch.cat((train_labels, finetune_labels))
logger.info("Training final model")
logreg_metric = build_metric(metric_type, num_classes=num_classes)
evals = train_and_evaluate(
C=best_C,
max_iter=max_train_iters,
train_features=train_features,
train_labels=train_labels,
logreg_metric=logreg_metric.clone(),
test_data_loader=val_data_loader,
eval_device=torch.cuda.current_device(),
train_dtype=train_dtype,
train_features_device=train_features_device,
)
best_stats = evals[1]["metrics"]
best_stats["best_C"] = best_C
logger.info(f"Log regression evaluation done in {int(time.time() - start)}s")
return best_stats
def eval_log_regression_with_model(
model,
train_dataset_str="ImageNet:split=TRAIN",
val_dataset_str="ImageNet:split=VAL",
finetune_dataset_str=None,
autocast_dtype=torch.float,
finetune_on_val=False,
metric_type=MetricType.MEAN_ACCURACY,
train_dtype=torch.float64,
train_features_device=_CPU_DEVICE,
max_train_iters=DEFAULT_MAX_ITER,
):
cudnn.benchmark = True
transform = make_classification_eval_transform(resize_size=224)
target_transform = None
train_dataset = make_dataset(dataset_str=train_dataset_str, transform=transform, target_transform=target_transform)
val_dataset = make_dataset(dataset_str=val_dataset_str, transform=transform, target_transform=target_transform)
if finetune_dataset_str is not None:
finetune_dataset = make_dataset(
dataset_str=finetune_dataset_str, transform=transform, target_transform=target_transform
)
else:
finetune_dataset = None
with torch.cuda.amp.autocast(dtype=autocast_dtype):
results_dict_logreg = eval_log_regression(
model=model,
train_dataset=train_dataset,
val_dataset=val_dataset,
finetune_dataset=finetune_dataset,
metric_type=metric_type,
batch_size=256,
num_workers=0, # 5,
finetune_on_val=finetune_on_val,
train_dtype=train_dtype,
train_features_device=train_features_device,
max_train_iters=max_train_iters,
)
results_dict = {
"top-1": results_dict_logreg["top-1"].cpu().numpy() * 100.0,
"top-5": results_dict_logreg.get("top-5", torch.tensor(0.0)).cpu().numpy() * 100.0,
"best_C": results_dict_logreg["best_C"],
}
logger.info(
"\n".join(
[
"Training of the supervised logistic regression on frozen features completed.\n"
"Top-1 test accuracy: {acc:.1f}".format(acc=results_dict["top-1"]),
"Top-5 test accuracy: {acc:.1f}".format(acc=results_dict["top-5"]),
"obtained for C = {c:.6f}".format(c=results_dict["best_C"]),
]
)
)
torch.distributed.barrier()
return results_dict
def main(args):
model, autocast_dtype = setup_and_build_model(args)
eval_log_regression_with_model(
model=model,
train_dataset_str=args.train_dataset_str,
val_dataset_str=args.val_dataset_str,
finetune_dataset_str=args.finetune_dataset_str,
autocast_dtype=autocast_dtype,
finetune_on_val=args.finetune_on_val,
metric_type=args.metric_type,
train_dtype=as_torch_dtype(args.train_dtype),
train_features_device=torch.device(args.train_features_device),
max_train_iters=args.max_train_iters,
)
return 0
if __name__ == "__main__":
description = "DINOv2 logistic regression evaluation"
args_parser = get_args_parser(description=description)
args = args_parser.parse_args()
sys.exit(main(args))
|