File size: 5,718 Bytes
265ae36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import nn

import logging


logger = logging.getLogger("dinov2")


try:
    from xformers.ops import cross_entropy

    def lossfunc(t, s, temp):
        s = s.float()
        t = t.float()
        if s.ndim == 2:
            return -cross_entropy(s.unsqueeze(0), t.unsqueeze(0), temp, bw_inplace=True).squeeze(0)
        elif s.ndim == 3:
            return -cross_entropy(s, t, temp, bw_inplace=True)

except ImportError:

    def lossfunc(t, s, temp):
        return torch.sum(t * F.log_softmax(s / temp, dim=-1), dim=-1)


class iBOTPatchLoss(nn.Module):
    def __init__(self, patch_out_dim, student_temp=0.1, center_momentum=0.9):
        super().__init__()
        self.student_temp = student_temp
        self.center_momentum = center_momentum
        self.register_buffer("center", torch.zeros(1, 1, patch_out_dim))
        self.updated = True
        self.reduce_handle = None
        self.len_teacher_patch_tokens = None
        self.async_batch_center = None

    @torch.no_grad()
    def softmax_center_teacher(self, teacher_patch_tokens, teacher_temp):
        self.apply_center_update()
        # teacher centering and sharpening
        #
        # WARNING:
        #   as self.center is a float32, everything gets casted to float32 afterwards
        #
        # teacher_patch_tokens = teacher_patch_tokens.float()
        # return F.softmax((teacher_patch_tokens.sub_(self.center.to(teacher_patch_tokens.dtype))).mul_(1 / teacher_temp), dim=-1)

        return F.softmax((teacher_patch_tokens - self.center) / teacher_temp, dim=-1)

        # this is experimental, keep everything in float16 and let's see what happens:
        # return F.softmax((teacher_patch_tokens.sub_(self.center)) / teacher_temp, dim=-1)

    @torch.no_grad()
    def sinkhorn_knopp_teacher(self, teacher_output, teacher_temp, n_masked_patches_tensor, n_iterations=3):
        teacher_output = teacher_output.float()
        # world_size = dist.get_world_size() if dist.is_initialized() else 1
        Q = torch.exp(teacher_output / teacher_temp).t()  # Q is K-by-B for consistency with notations from our paper
        # B = Q.shape[1] * world_size # number of samples to assign
        B = n_masked_patches_tensor
        dist.all_reduce(B)
        K = Q.shape[0]  # how many prototypes

        # make the matrix sums to 1
        sum_Q = torch.sum(Q)
        if dist.is_initialized():
            dist.all_reduce(sum_Q)
        Q /= sum_Q

        for it in range(n_iterations):
            # normalize each row: total weight per prototype must be 1/K
            sum_of_rows = torch.sum(Q, dim=1, keepdim=True)
            if dist.is_initialized():
                dist.all_reduce(sum_of_rows)
            Q /= sum_of_rows
            Q /= K

            # normalize each column: total weight per sample must be 1/B
            Q /= torch.sum(Q, dim=0, keepdim=True)
            Q /= B

        Q *= B  # the columns must sum to 1 so that Q is an assignment
        return Q.t()

    def forward(self, student_patch_tokens, teacher_patch_tokens, student_masks_flat):
        """
        Cross-entropy between softmax outputs of the teacher and student networks.
        student_patch_tokens: (B, N, D) tensor
        teacher_patch_tokens: (B, N, D) tensor
        student_masks_flat: (B, N) tensor
        """
        t = teacher_patch_tokens
        s = student_patch_tokens
        loss = torch.sum(t * F.log_softmax(s / self.student_temp, dim=-1), dim=-1)
        loss = torch.sum(loss * student_masks_flat.float(), dim=-1) / student_masks_flat.sum(dim=-1).clamp(min=1.0)
        return -loss.mean()

    def forward_masked(
        self,
        student_patch_tokens_masked,
        teacher_patch_tokens_masked,
        student_masks_flat,
        n_masked_patches=None,
        masks_weight=None,
    ):
        t = teacher_patch_tokens_masked
        s = student_patch_tokens_masked
        # loss = torch.sum(t * F.log_softmax(s / self.student_temp, dim=-1), dim=-1)
        loss = lossfunc(t, s, self.student_temp)
        if masks_weight is None:
            masks_weight = (
                (1 / student_masks_flat.sum(-1).clamp(min=1.0))
                .unsqueeze(-1)
                .expand_as(student_masks_flat)[student_masks_flat]
            )
        if n_masked_patches is not None:
            loss = loss[:n_masked_patches]
        loss = loss * masks_weight
        return -loss.sum() / student_masks_flat.shape[0]

    @torch.no_grad()
    def update_center(self, teacher_patch_tokens):
        self.reduce_center_update(teacher_patch_tokens)

    @torch.no_grad()
    def reduce_center_update(self, teacher_patch_tokens):
        self.updated = False
        self.len_teacher_patch_tokens = len(teacher_patch_tokens)
        self.async_batch_center = torch.sum(teacher_patch_tokens.mean(1), dim=0, keepdim=True)
        if dist.is_initialized():
            self.reduce_handle = dist.all_reduce(self.async_batch_center, async_op=True)

    @torch.no_grad()
    def apply_center_update(self):
        if self.updated is False:
            world_size = dist.get_world_size() if dist.is_initialized() else 1

            if self.reduce_handle is not None:
                self.reduce_handle.wait()
            _t = self.async_batch_center / (self.len_teacher_patch_tokens * world_size)

            self.center = self.center * self.center_momentum + _t * (1 - self.center_momentum)

            self.updated = True