Spaces:
Running
Running
File size: 5,718 Bytes
265ae36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch import nn
import logging
logger = logging.getLogger("dinov2")
try:
from xformers.ops import cross_entropy
def lossfunc(t, s, temp):
s = s.float()
t = t.float()
if s.ndim == 2:
return -cross_entropy(s.unsqueeze(0), t.unsqueeze(0), temp, bw_inplace=True).squeeze(0)
elif s.ndim == 3:
return -cross_entropy(s, t, temp, bw_inplace=True)
except ImportError:
def lossfunc(t, s, temp):
return torch.sum(t * F.log_softmax(s / temp, dim=-1), dim=-1)
class iBOTPatchLoss(nn.Module):
def __init__(self, patch_out_dim, student_temp=0.1, center_momentum=0.9):
super().__init__()
self.student_temp = student_temp
self.center_momentum = center_momentum
self.register_buffer("center", torch.zeros(1, 1, patch_out_dim))
self.updated = True
self.reduce_handle = None
self.len_teacher_patch_tokens = None
self.async_batch_center = None
@torch.no_grad()
def softmax_center_teacher(self, teacher_patch_tokens, teacher_temp):
self.apply_center_update()
# teacher centering and sharpening
#
# WARNING:
# as self.center is a float32, everything gets casted to float32 afterwards
#
# teacher_patch_tokens = teacher_patch_tokens.float()
# return F.softmax((teacher_patch_tokens.sub_(self.center.to(teacher_patch_tokens.dtype))).mul_(1 / teacher_temp), dim=-1)
return F.softmax((teacher_patch_tokens - self.center) / teacher_temp, dim=-1)
# this is experimental, keep everything in float16 and let's see what happens:
# return F.softmax((teacher_patch_tokens.sub_(self.center)) / teacher_temp, dim=-1)
@torch.no_grad()
def sinkhorn_knopp_teacher(self, teacher_output, teacher_temp, n_masked_patches_tensor, n_iterations=3):
teacher_output = teacher_output.float()
# world_size = dist.get_world_size() if dist.is_initialized() else 1
Q = torch.exp(teacher_output / teacher_temp).t() # Q is K-by-B for consistency with notations from our paper
# B = Q.shape[1] * world_size # number of samples to assign
B = n_masked_patches_tensor
dist.all_reduce(B)
K = Q.shape[0] # how many prototypes
# make the matrix sums to 1
sum_Q = torch.sum(Q)
if dist.is_initialized():
dist.all_reduce(sum_Q)
Q /= sum_Q
for it in range(n_iterations):
# normalize each row: total weight per prototype must be 1/K
sum_of_rows = torch.sum(Q, dim=1, keepdim=True)
if dist.is_initialized():
dist.all_reduce(sum_of_rows)
Q /= sum_of_rows
Q /= K
# normalize each column: total weight per sample must be 1/B
Q /= torch.sum(Q, dim=0, keepdim=True)
Q /= B
Q *= B # the columns must sum to 1 so that Q is an assignment
return Q.t()
def forward(self, student_patch_tokens, teacher_patch_tokens, student_masks_flat):
"""
Cross-entropy between softmax outputs of the teacher and student networks.
student_patch_tokens: (B, N, D) tensor
teacher_patch_tokens: (B, N, D) tensor
student_masks_flat: (B, N) tensor
"""
t = teacher_patch_tokens
s = student_patch_tokens
loss = torch.sum(t * F.log_softmax(s / self.student_temp, dim=-1), dim=-1)
loss = torch.sum(loss * student_masks_flat.float(), dim=-1) / student_masks_flat.sum(dim=-1).clamp(min=1.0)
return -loss.mean()
def forward_masked(
self,
student_patch_tokens_masked,
teacher_patch_tokens_masked,
student_masks_flat,
n_masked_patches=None,
masks_weight=None,
):
t = teacher_patch_tokens_masked
s = student_patch_tokens_masked
# loss = torch.sum(t * F.log_softmax(s / self.student_temp, dim=-1), dim=-1)
loss = lossfunc(t, s, self.student_temp)
if masks_weight is None:
masks_weight = (
(1 / student_masks_flat.sum(-1).clamp(min=1.0))
.unsqueeze(-1)
.expand_as(student_masks_flat)[student_masks_flat]
)
if n_masked_patches is not None:
loss = loss[:n_masked_patches]
loss = loss * masks_weight
return -loss.sum() / student_masks_flat.shape[0]
@torch.no_grad()
def update_center(self, teacher_patch_tokens):
self.reduce_center_update(teacher_patch_tokens)
@torch.no_grad()
def reduce_center_update(self, teacher_patch_tokens):
self.updated = False
self.len_teacher_patch_tokens = len(teacher_patch_tokens)
self.async_batch_center = torch.sum(teacher_patch_tokens.mean(1), dim=0, keepdim=True)
if dist.is_initialized():
self.reduce_handle = dist.all_reduce(self.async_batch_center, async_op=True)
@torch.no_grad()
def apply_center_update(self):
if self.updated is False:
world_size = dist.get_world_size() if dist.is_initialized() else 1
if self.reduce_handle is not None:
self.reduce_handle.wait()
_t = self.async_batch_center / (self.len_teacher_patch_tokens * world_size)
self.center = self.center * self.center_momentum + _t * (1 - self.center_momentum)
self.updated = True
|