File size: 10,241 Bytes
265ae36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

from dataclasses import dataclass
from enum import Enum
from functools import lru_cache
from gzip import GzipFile
from io import BytesIO
from mmap import ACCESS_READ, mmap
import os
from typing import Any, Callable, List, Optional, Set, Tuple
import warnings

import numpy as np

from .extended import ExtendedVisionDataset


_Labels = int

_DEFAULT_MMAP_CACHE_SIZE = 16  # Warning: This can exhaust file descriptors


@dataclass
class _ClassEntry:
    block_offset: int
    maybe_filename: Optional[str] = None


@dataclass
class _Entry:
    class_index: int  # noqa: E701
    start_offset: int
    end_offset: int
    filename: str


class _Split(Enum):
    TRAIN = "train"
    VAL = "val"

    @property
    def length(self) -> int:
        return {
            _Split.TRAIN: 11_797_647,
            _Split.VAL: 561_050,
        }[self]

    def entries_path(self):
        return f"imagenet21kp_{self.value}.txt"


def _get_tarball_path(class_id: str) -> str:
    return f"{class_id}.tar"


def _make_mmap_tarball(tarballs_root: str, mmap_cache_size: int):
    @lru_cache(maxsize=mmap_cache_size)
    def _mmap_tarball(class_id: str) -> mmap:
        tarball_path = _get_tarball_path(class_id)
        tarball_full_path = os.path.join(tarballs_root, tarball_path)
        with open(tarball_full_path) as f:
            return mmap(fileno=f.fileno(), length=0, access=ACCESS_READ)

    return _mmap_tarball


class ImageNet22k(ExtendedVisionDataset):
    _GZIPPED_INDICES: Set[int] = {
        841_545,
        1_304_131,
        2_437_921,
        2_672_079,
        2_795_676,
        2_969_786,
        6_902_965,
        6_903_550,
        6_903_628,
        7_432_557,
        7_432_589,
        7_813_809,
        8_329_633,
        10_296_990,
        10_417_652,
        10_492_265,
        10_598_078,
        10_782_398,
        10_902_612,
        11_203_736,
        11_342_890,
        11_397_596,
        11_589_762,
        11_705_103,
        12_936_875,
        13_289_782,
    }
    Labels = _Labels

    def __init__(
        self,
        *,
        root: str,
        extra: str,
        transforms: Optional[Callable] = None,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        mmap_cache_size: int = _DEFAULT_MMAP_CACHE_SIZE,
    ) -> None:
        super().__init__(root, transforms, transform, target_transform)
        self._extra_root = extra

        entries_path = self._get_entries_path(root)
        self._entries = self._load_extra(entries_path)

        class_ids_path = self._get_class_ids_path(root)
        self._class_ids = self._load_extra(class_ids_path)

        self._gzipped_indices = ImageNet22k._GZIPPED_INDICES
        self._mmap_tarball = _make_mmap_tarball(self._tarballs_root, mmap_cache_size)

    def _get_entries_path(self, root: Optional[str] = None) -> str:
        return "entries.npy"

    def _get_class_ids_path(self, root: Optional[str] = None) -> str:
        return "class-ids.npy"

    def _find_class_ids(self, path: str) -> List[str]:
        class_ids = []

        with os.scandir(path) as entries:
            for entry in entries:
                root, ext = os.path.splitext(entry.name)
                if ext != ".tar":
                    continue
                class_ids.append(root)

        return sorted(class_ids)

    def _load_entries_class_ids(self, root: Optional[str] = None) -> Tuple[List[_Entry], List[str]]:
        root = self.get_root(root)
        entries: List[_Entry] = []
        class_ids = self._find_class_ids(root)

        for class_index, class_id in enumerate(class_ids):
            path = os.path.join(root, "blocks", f"{class_id}.log")
            class_entries = []

            try:
                with open(path) as f:
                    for line in f:
                        line = line.rstrip()
                        block, filename = line.split(":")
                        block_offset = int(block[6:])
                        filename = filename[1:]

                        maybe_filename = None
                        if filename != "** Block of NULs **":
                            maybe_filename = filename
                            _, ext = os.path.splitext(filename)
                            # assert ext == ".JPEG"

                        class_entry = _ClassEntry(block_offset, maybe_filename)
                        class_entries.append(class_entry)
            except OSError as e:
                raise RuntimeError(f'can not read blocks file "{path}"') from e

            assert class_entries[-1].maybe_filename is None

            for class_entry1, class_entry2 in zip(class_entries, class_entries[1:]):
                assert class_entry1.block_offset <= class_entry2.block_offset
                start_offset = 512 * class_entry1.block_offset
                end_offset = 512 * class_entry2.block_offset
                assert class_entry1.maybe_filename is not None
                filename = class_entry1.maybe_filename
                entry = _Entry(class_index, start_offset, end_offset, filename)
                # Skip invalid image files (PIL throws UnidentifiedImageError)
                if filename == "n06470073_47249.JPEG":
                    continue
                entries.append(entry)

        return entries, class_ids

    def _load_extra(self, extra_path: str) -> np.ndarray:
        extra_root = self._extra_root
        extra_full_path = os.path.join(extra_root, extra_path)
        return np.load(extra_full_path, mmap_mode="r")

    def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None:
        extra_root = self._extra_root
        extra_full_path = os.path.join(extra_root, extra_path)
        os.makedirs(extra_root, exist_ok=True)
        np.save(extra_full_path, extra_array)

    @property
    def _tarballs_root(self) -> str:
        return self.root

    def find_class_id(self, class_index: int) -> str:
        return str(self._class_ids[class_index])

    def get_image_data(self, index: int) -> bytes:
        entry = self._entries[index]
        class_id = entry["class_id"]
        class_mmap = self._mmap_tarball(class_id)

        start_offset, end_offset = entry["start_offset"], entry["end_offset"]
        try:
            mapped_data = class_mmap[start_offset:end_offset]
            data = mapped_data[512:]  # Skip entry header block

            if len(data) >= 2 and tuple(data[:2]) == (0x1F, 0x8B):
                assert index in self._gzipped_indices, f"unexpected gzip header for sample {index}"
                with GzipFile(fileobj=BytesIO(data)) as g:
                    data = g.read()
        except Exception as e:
            raise RuntimeError(f"can not retrieve image data for sample {index} " f'from "{class_id}" tarball') from e

        return data

    def get_target(self, index: int) -> Any:
        return int(self._entries[index]["class_index"])

    def get_targets(self) -> np.ndarray:
        return self._entries["class_index"]

    def get_class_id(self, index: int) -> str:
        return str(self._entries[index]["class_id"])

    def get_class_ids(self) -> np.ndarray:
        return self._entries["class_id"]

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            return super().__getitem__(index)

    def __len__(self) -> int:
        return len(self._entries)

    def _dump_entries(self, *args, **kwargs) -> None:
        entries, class_ids = self._load_entries_class_ids(*args, **kwargs)

        max_class_id_length, max_filename_length, max_class_index = -1, -1, -1
        for entry in entries:
            class_id = class_ids[entry.class_index]
            max_class_index = max(entry.class_index, max_class_index)
            max_class_id_length = max(len(class_id), max_class_id_length)
            max_filename_length = max(len(entry.filename), max_filename_length)

        dtype = np.dtype(
            [
                ("class_index", "<u4"),
                ("class_id", f"U{max_class_id_length}"),
                ("start_offset", "<u4"),
                ("end_offset", "<u4"),
                ("filename", f"U{max_filename_length}"),
            ]
        )
        sample_count = len(entries)
        entries_array = np.empty(sample_count, dtype=dtype)
        for i, entry in enumerate(entries):
            class_index = entry.class_index
            class_id = class_ids[class_index]
            start_offset = entry.start_offset
            end_offset = entry.end_offset
            filename = entry.filename
            entries_array[i] = (
                class_index,
                class_id,
                start_offset,
                end_offset,
                filename,
            )

        entries_path = self._get_entries_path(*args, **kwargs)
        self._save_extra(entries_array, entries_path)

    def _dump_class_ids(self, *args, **kwargs) -> None:
        entries_path = self._get_entries_path(*args, **kwargs)
        entries_array = self._load_extra(entries_path)

        max_class_id_length, max_class_index = -1, -1
        for entry in entries_array:
            class_index, class_id = entry["class_index"], entry["class_id"]
            max_class_index = max(int(class_index), max_class_index)
            max_class_id_length = max(len(str(class_id)), max_class_id_length)

        class_ids_array = np.empty(max_class_index + 1, dtype=f"U{max_class_id_length}")
        for entry in entries_array:
            class_index, class_id = entry["class_index"], entry["class_id"]
            class_ids_array[class_index] = class_id
        class_ids_path = self._get_class_ids_path(*args, **kwargs)
        self._save_extra(class_ids_array, class_ids_path)

    def _dump_extra(self, *args, **kwargs) -> None:
        self._dump_entries(*args, *kwargs)
        self._dump_class_ids(*args, *kwargs)

    def dump_extra(self, root: Optional[str] = None) -> None:
        return self._dump_extra(root)