Spaces:
Running
Running
File size: 21,426 Bytes
265ae36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
import argparse
from functools import partial
import json
import logging
import os
import sys
from typing import List, Optional
import numpy as np
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer
from dinov2.data import SamplerType, make_data_loader, make_dataset
from dinov2.data.transforms import make_classification_eval_transform, make_classification_train_transform
import dinov2.distributed as distributed
from dinov2.eval.metrics import MetricType, build_metric
from dinov2.eval.setup import get_args_parser as get_setup_args_parser
from dinov2.eval.setup import setup_and_build_model
from dinov2.eval.utils import ModelWithIntermediateLayers, evaluate
from dinov2.logging import MetricLogger
logger = logging.getLogger("dinov2")
def get_args_parser(
description: Optional[str] = None,
parents: Optional[List[argparse.ArgumentParser]] = None,
add_help: bool = True,
):
parents = parents or []
setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
parents = [setup_args_parser]
parser = argparse.ArgumentParser(
description=description,
parents=parents,
add_help=add_help,
)
parser.add_argument(
"--train-dataset",
dest="train_dataset_str",
type=str,
help="Training dataset",
)
parser.add_argument(
"--val-dataset",
dest="val_dataset_str",
type=str,
help="Validation dataset",
)
parser.add_argument(
"--test-datasets",
dest="test_dataset_strs",
type=str,
nargs="+",
help="Test datasets, none to reuse the validation dataset",
)
parser.add_argument(
"--epochs",
type=int,
help="Number of training epochs",
)
parser.add_argument(
"--batch-size",
type=int,
help="Batch Size (per GPU)",
)
parser.add_argument(
"--num-workers",
type=int,
help="Number de Workers",
)
parser.add_argument(
"--epoch-length",
type=int,
help="Length of an epoch in number of iterations",
)
parser.add_argument(
"--save-checkpoint-frequency",
type=int,
help="Number of epochs between two named checkpoint saves.",
)
parser.add_argument(
"--eval-period-iterations",
type=int,
help="Number of iterations between two evaluations.",
)
parser.add_argument(
"--learning-rates",
nargs="+",
type=float,
help="Learning rates to grid search.",
)
parser.add_argument(
"--no-resume",
action="store_true",
help="Whether to not resume from existing checkpoints",
)
parser.add_argument(
"--val-metric-type",
type=MetricType,
choices=list(MetricType),
help="Validation metric",
)
parser.add_argument(
"--test-metric-types",
type=MetricType,
choices=list(MetricType),
nargs="+",
help="Evaluation metric",
)
parser.add_argument(
"--classifier-fpath",
type=str,
help="Path to a file containing pretrained linear classifiers",
)
parser.add_argument(
"--val-class-mapping-fpath",
type=str,
help="Path to a file containing a mapping to adjust classifier outputs",
)
parser.add_argument(
"--test-class-mapping-fpaths",
nargs="+",
type=str,
help="Path to a file containing a mapping to adjust classifier outputs",
)
parser.set_defaults(
train_dataset_str="ImageNet:split=TRAIN",
val_dataset_str="ImageNet:split=VAL",
test_dataset_strs=None,
epochs=10,
batch_size=128,
num_workers=8,
epoch_length=1250,
save_checkpoint_frequency=20,
eval_period_iterations=1250,
learning_rates=[1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 0.1],
val_metric_type=MetricType.MEAN_ACCURACY,
test_metric_types=None,
classifier_fpath=None,
val_class_mapping_fpath=None,
test_class_mapping_fpaths=[None],
)
return parser
def has_ddp_wrapper(m: nn.Module) -> bool:
return isinstance(m, DistributedDataParallel)
def remove_ddp_wrapper(m: nn.Module) -> nn.Module:
return m.module if has_ddp_wrapper(m) else m
def _pad_and_collate(batch):
maxlen = max(len(targets) for image, targets in batch)
padded_batch = [
(image, np.pad(targets, (0, maxlen - len(targets)), constant_values=-1)) for image, targets in batch
]
return torch.utils.data.default_collate(padded_batch)
def create_linear_input(x_tokens_list, use_n_blocks, use_avgpool):
intermediate_output = x_tokens_list[-use_n_blocks:]
output = torch.cat([class_token for _, class_token in intermediate_output], dim=-1)
if use_avgpool:
output = torch.cat(
(
output,
torch.mean(intermediate_output[-1][0], dim=1), # patch tokens
),
dim=-1,
)
output = output.reshape(output.shape[0], -1)
return output.float()
class LinearClassifier(nn.Module):
"""Linear layer to train on top of frozen features"""
def __init__(self, out_dim, use_n_blocks, use_avgpool, num_classes=1000):
super().__init__()
self.out_dim = out_dim
self.use_n_blocks = use_n_blocks
self.use_avgpool = use_avgpool
self.num_classes = num_classes
self.linear = nn.Linear(out_dim, num_classes)
self.linear.weight.data.normal_(mean=0.0, std=0.01)
self.linear.bias.data.zero_()
def forward(self, x_tokens_list):
output = create_linear_input(x_tokens_list, self.use_n_blocks, self.use_avgpool)
return self.linear(output)
class AllClassifiers(nn.Module):
def __init__(self, classifiers_dict):
super().__init__()
self.classifiers_dict = nn.ModuleDict()
self.classifiers_dict.update(classifiers_dict)
def forward(self, inputs):
return {k: v.forward(inputs) for k, v in self.classifiers_dict.items()}
def __len__(self):
return len(self.classifiers_dict)
class LinearPostprocessor(nn.Module):
def __init__(self, linear_classifier, class_mapping=None):
super().__init__()
self.linear_classifier = linear_classifier
self.register_buffer("class_mapping", None if class_mapping is None else torch.LongTensor(class_mapping))
def forward(self, samples, targets):
preds = self.linear_classifier(samples)
return {
"preds": preds[:, self.class_mapping] if self.class_mapping is not None else preds,
"target": targets,
}
def scale_lr(learning_rates, batch_size):
return learning_rates * (batch_size * distributed.get_global_size()) / 256.0
def setup_linear_classifiers(sample_output, n_last_blocks_list, learning_rates, batch_size, num_classes=1000):
linear_classifiers_dict = nn.ModuleDict()
optim_param_groups = []
for n in n_last_blocks_list:
for avgpool in [False, True]:
for _lr in learning_rates:
lr = scale_lr(_lr, batch_size)
out_dim = create_linear_input(sample_output, use_n_blocks=n, use_avgpool=avgpool).shape[1]
linear_classifier = LinearClassifier(
out_dim, use_n_blocks=n, use_avgpool=avgpool, num_classes=num_classes
)
linear_classifier = linear_classifier.cuda()
linear_classifiers_dict[
f"classifier_{n}_blocks_avgpool_{avgpool}_lr_{lr:.5f}".replace(".", "_")
] = linear_classifier
optim_param_groups.append({"params": linear_classifier.parameters(), "lr": lr})
linear_classifiers = AllClassifiers(linear_classifiers_dict)
if distributed.is_enabled():
linear_classifiers = nn.parallel.DistributedDataParallel(linear_classifiers)
return linear_classifiers, optim_param_groups
@torch.no_grad()
def evaluate_linear_classifiers(
feature_model,
linear_classifiers,
data_loader,
metric_type,
metrics_file_path,
training_num_classes,
iteration,
prefixstring="",
class_mapping=None,
best_classifier_on_val=None,
):
logger.info("running validation !")
num_classes = len(class_mapping) if class_mapping is not None else training_num_classes
metric = build_metric(metric_type, num_classes=num_classes)
postprocessors = {k: LinearPostprocessor(v, class_mapping) for k, v in linear_classifiers.classifiers_dict.items()}
metrics = {k: metric.clone() for k in linear_classifiers.classifiers_dict}
_, results_dict_temp = evaluate(
feature_model,
data_loader,
postprocessors,
metrics,
torch.cuda.current_device(),
)
logger.info("")
results_dict = {}
max_accuracy = 0
best_classifier = ""
for i, (classifier_string, metric) in enumerate(results_dict_temp.items()):
logger.info(f"{prefixstring} -- Classifier: {classifier_string} * {metric}")
if (
best_classifier_on_val is None and metric["top-1"].item() > max_accuracy
) or classifier_string == best_classifier_on_val:
max_accuracy = metric["top-1"].item()
best_classifier = classifier_string
results_dict["best_classifier"] = {"name": best_classifier, "accuracy": max_accuracy}
logger.info(f"best classifier: {results_dict['best_classifier']}")
if distributed.is_main_process():
with open(metrics_file_path, "a") as f:
f.write(f"iter: {iteration}\n")
for k, v in results_dict.items():
f.write(json.dumps({k: v}) + "\n")
f.write("\n")
return results_dict
def eval_linear(
*,
feature_model,
linear_classifiers,
train_data_loader,
val_data_loader,
metrics_file_path,
optimizer,
scheduler,
output_dir,
max_iter,
checkpoint_period, # In number of iter, creates a new file every period
running_checkpoint_period, # Period to update main checkpoint file
eval_period,
metric_type,
training_num_classes,
resume=True,
classifier_fpath=None,
val_class_mapping=None,
):
checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler)
start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1
periodic_checkpointer = PeriodicCheckpointer(checkpointer, checkpoint_period, max_iter=max_iter)
iteration = start_iter
logger.info("Starting training from iteration {}".format(start_iter))
metric_logger = MetricLogger(delimiter=" ")
header = "Training"
for data, labels in metric_logger.log_every(
train_data_loader,
10,
header,
max_iter,
start_iter,
):
data = data.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
features = feature_model(data)
outputs = linear_classifiers(features)
losses = {f"loss_{k}": nn.CrossEntropyLoss()(v, labels) for k, v in outputs.items()}
loss = sum(losses.values())
# compute the gradients
optimizer.zero_grad()
loss.backward()
# step
optimizer.step()
scheduler.step()
# log
if iteration % 10 == 0:
torch.cuda.synchronize()
metric_logger.update(loss=loss.item())
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
print("lr", optimizer.param_groups[0]["lr"])
if iteration - start_iter > 5:
if iteration % running_checkpoint_period == 0:
torch.cuda.synchronize()
if distributed.is_main_process():
logger.info("Checkpointing running_checkpoint")
periodic_checkpointer.save("running_checkpoint_linear_eval", iteration=iteration)
torch.cuda.synchronize()
periodic_checkpointer.step(iteration)
if eval_period > 0 and (iteration + 1) % eval_period == 0 and iteration != max_iter - 1:
_ = evaluate_linear_classifiers(
feature_model=feature_model,
linear_classifiers=remove_ddp_wrapper(linear_classifiers),
data_loader=val_data_loader,
metrics_file_path=metrics_file_path,
prefixstring=f"ITER: {iteration}",
metric_type=metric_type,
training_num_classes=training_num_classes,
iteration=iteration,
class_mapping=val_class_mapping,
)
torch.cuda.synchronize()
iteration = iteration + 1
val_results_dict = evaluate_linear_classifiers(
feature_model=feature_model,
linear_classifiers=remove_ddp_wrapper(linear_classifiers),
data_loader=val_data_loader,
metrics_file_path=metrics_file_path,
metric_type=metric_type,
training_num_classes=training_num_classes,
iteration=iteration,
class_mapping=val_class_mapping,
)
return val_results_dict, feature_model, linear_classifiers, iteration
def make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type):
test_dataset = make_dataset(
dataset_str=test_dataset_str,
transform=make_classification_eval_transform(),
)
test_data_loader = make_data_loader(
dataset=test_dataset,
batch_size=batch_size,
num_workers=num_workers,
sampler_type=SamplerType.DISTRIBUTED,
drop_last=False,
shuffle=False,
persistent_workers=False,
collate_fn=_pad_and_collate if metric_type == MetricType.IMAGENET_REAL_ACCURACY else None,
)
return test_data_loader
def test_on_datasets(
feature_model,
linear_classifiers,
test_dataset_strs,
batch_size,
num_workers,
test_metric_types,
metrics_file_path,
training_num_classes,
iteration,
best_classifier_on_val,
prefixstring="",
test_class_mappings=[None],
):
results_dict = {}
for test_dataset_str, class_mapping, metric_type in zip(test_dataset_strs, test_class_mappings, test_metric_types):
logger.info(f"Testing on {test_dataset_str}")
test_data_loader = make_eval_data_loader(test_dataset_str, batch_size, num_workers, metric_type)
dataset_results_dict = evaluate_linear_classifiers(
feature_model,
remove_ddp_wrapper(linear_classifiers),
test_data_loader,
metric_type,
metrics_file_path,
training_num_classes,
iteration,
prefixstring="",
class_mapping=class_mapping,
best_classifier_on_val=best_classifier_on_val,
)
results_dict[f"{test_dataset_str}_accuracy"] = 100.0 * dataset_results_dict["best_classifier"]["accuracy"]
return results_dict
def run_eval_linear(
model,
output_dir,
train_dataset_str,
val_dataset_str,
batch_size,
epochs,
epoch_length,
num_workers,
save_checkpoint_frequency,
eval_period_iterations,
learning_rates,
autocast_dtype,
test_dataset_strs=None,
resume=True,
classifier_fpath=None,
val_class_mapping_fpath=None,
test_class_mapping_fpaths=[None],
val_metric_type=MetricType.MEAN_ACCURACY,
test_metric_types=None,
):
seed = 0
if test_dataset_strs is None:
test_dataset_strs = [val_dataset_str]
if test_metric_types is None:
test_metric_types = [val_metric_type] * len(test_dataset_strs)
else:
assert len(test_metric_types) == len(test_dataset_strs)
assert len(test_dataset_strs) == len(test_class_mapping_fpaths)
train_transform = make_classification_train_transform()
train_dataset = make_dataset(
dataset_str=train_dataset_str,
transform=train_transform,
)
training_num_classes = len(torch.unique(torch.Tensor(train_dataset.get_targets().astype(int))))
sampler_type = SamplerType.SHARDED_INFINITE
# sampler_type = SamplerType.INFINITE
n_last_blocks_list = [1, 4]
n_last_blocks = max(n_last_blocks_list)
autocast_ctx = partial(torch.cuda.amp.autocast, enabled=True, dtype=autocast_dtype)
feature_model = ModelWithIntermediateLayers(model, n_last_blocks, autocast_ctx)
sample_output = feature_model(train_dataset[0][0].unsqueeze(0).cuda())
linear_classifiers, optim_param_groups = setup_linear_classifiers(
sample_output,
n_last_blocks_list,
learning_rates,
batch_size,
training_num_classes,
)
optimizer = torch.optim.SGD(optim_param_groups, momentum=0.9, weight_decay=0)
max_iter = epochs * epoch_length
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, max_iter, eta_min=0)
checkpointer = Checkpointer(linear_classifiers, output_dir, optimizer=optimizer, scheduler=scheduler)
start_iter = checkpointer.resume_or_load(classifier_fpath or "", resume=resume).get("iteration", -1) + 1
train_data_loader = make_data_loader(
dataset=train_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=True,
seed=seed,
sampler_type=sampler_type,
sampler_advance=start_iter,
drop_last=True,
persistent_workers=True,
)
val_data_loader = make_eval_data_loader(val_dataset_str, batch_size, num_workers, val_metric_type)
checkpoint_period = save_checkpoint_frequency * epoch_length
if val_class_mapping_fpath is not None:
logger.info(f"Using class mapping from {val_class_mapping_fpath}")
val_class_mapping = np.load(val_class_mapping_fpath)
else:
val_class_mapping = None
test_class_mappings = []
for class_mapping_fpath in test_class_mapping_fpaths:
if class_mapping_fpath is not None and class_mapping_fpath != "None":
logger.info(f"Using class mapping from {class_mapping_fpath}")
class_mapping = np.load(class_mapping_fpath)
else:
class_mapping = None
test_class_mappings.append(class_mapping)
metrics_file_path = os.path.join(output_dir, "results_eval_linear.json")
val_results_dict, feature_model, linear_classifiers, iteration = eval_linear(
feature_model=feature_model,
linear_classifiers=linear_classifiers,
train_data_loader=train_data_loader,
val_data_loader=val_data_loader,
metrics_file_path=metrics_file_path,
optimizer=optimizer,
scheduler=scheduler,
output_dir=output_dir,
max_iter=max_iter,
checkpoint_period=checkpoint_period,
running_checkpoint_period=epoch_length,
eval_period=eval_period_iterations,
metric_type=val_metric_type,
training_num_classes=training_num_classes,
resume=resume,
val_class_mapping=val_class_mapping,
classifier_fpath=classifier_fpath,
)
results_dict = {}
if len(test_dataset_strs) > 1 or test_dataset_strs[0] != val_dataset_str:
results_dict = test_on_datasets(
feature_model,
linear_classifiers,
test_dataset_strs,
batch_size,
0, # num_workers,
test_metric_types,
metrics_file_path,
training_num_classes,
iteration,
val_results_dict["best_classifier"]["name"],
prefixstring="",
test_class_mappings=test_class_mappings,
)
results_dict["best_classifier"] = val_results_dict["best_classifier"]["name"]
results_dict[f"{val_dataset_str}_accuracy"] = 100.0 * val_results_dict["best_classifier"]["accuracy"]
logger.info("Test Results Dict " + str(results_dict))
return results_dict
def main(args):
model, autocast_dtype = setup_and_build_model(args)
run_eval_linear(
model=model,
output_dir=args.output_dir,
train_dataset_str=args.train_dataset_str,
val_dataset_str=args.val_dataset_str,
test_dataset_strs=args.test_dataset_strs,
batch_size=args.batch_size,
epochs=args.epochs,
epoch_length=args.epoch_length,
num_workers=args.num_workers,
save_checkpoint_frequency=args.save_checkpoint_frequency,
eval_period_iterations=args.eval_period_iterations,
learning_rates=args.learning_rates,
autocast_dtype=autocast_dtype,
resume=not args.no_resume,
classifier_fpath=args.classifier_fpath,
val_metric_type=args.val_metric_type,
test_metric_types=args.test_metric_types,
val_class_mapping_fpath=args.val_class_mapping_fpath,
test_class_mapping_fpaths=args.test_class_mapping_fpaths,
)
return 0
if __name__ == "__main__":
description = "DINOv2 linear evaluation"
args_parser = get_args_parser(description=description)
args = args_parser.parse_args()
sys.exit(main(args))
|