File size: 10,681 Bytes
265ae36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

import argparse
import logging
import math
import os
from functools import partial

from fvcore.common.checkpoint import PeriodicCheckpointer
import torch

from dinov2.data import SamplerType, make_data_loader, make_dataset
from dinov2.data import collate_data_and_cast, DataAugmentationDINO, MaskingGenerator
import dinov2.distributed as distributed
from dinov2.fsdp import FSDPCheckpointer
from dinov2.logging import MetricLogger
from dinov2.utils.config import setup
from dinov2.utils.utils import CosineScheduler

from dinov2.train.ssl_meta_arch import SSLMetaArch


torch.backends.cuda.matmul.allow_tf32 = True  # PyTorch 1.12 sets this to False by default
logger = logging.getLogger("dinov2")


def get_args_parser(add_help: bool = True):
    parser = argparse.ArgumentParser("DINOv2 training", add_help=add_help)
    parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
    parser.add_argument(
        "--no-resume",
        action="store_true",
        help="Whether to not attempt to resume from the checkpoint directory. ",
    )
    parser.add_argument("--eval-only", action="store_true", help="perform evaluation only")
    parser.add_argument("--eval", type=str, default="", help="Eval type to perform")
    parser.add_argument(
        "opts",
        help="""
Modify config options at the end of the command. For Yacs configs, use
space-separated "PATH.KEY VALUE" pairs.
For python-based LazyConfig, use "path.key=value".
        """.strip(),
        default=None,
        nargs=argparse.REMAINDER,
    )
    parser.add_argument(
        "--output-dir",
        "--output_dir",
        default="",
        type=str,
        help="Output directory to save logs and checkpoints",
    )

    return parser


def build_optimizer(cfg, params_groups):
    return torch.optim.AdamW(params_groups, betas=(cfg.optim.adamw_beta1, cfg.optim.adamw_beta2))


def build_schedulers(cfg):
    OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
    lr = dict(
        base_value=cfg.optim["lr"],
        final_value=cfg.optim["min_lr"],
        total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
        warmup_iters=cfg.optim["warmup_epochs"] * OFFICIAL_EPOCH_LENGTH,
        start_warmup_value=0,
    )
    wd = dict(
        base_value=cfg.optim["weight_decay"],
        final_value=cfg.optim["weight_decay_end"],
        total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
    )
    momentum = dict(
        base_value=cfg.teacher["momentum_teacher"],
        final_value=cfg.teacher["final_momentum_teacher"],
        total_iters=cfg.optim["epochs"] * OFFICIAL_EPOCH_LENGTH,
    )
    teacher_temp = dict(
        base_value=cfg.teacher["teacher_temp"],
        final_value=cfg.teacher["teacher_temp"],
        total_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH,
        warmup_iters=cfg.teacher["warmup_teacher_temp_epochs"] * OFFICIAL_EPOCH_LENGTH,
        start_warmup_value=cfg.teacher["warmup_teacher_temp"],
    )

    lr_schedule = CosineScheduler(**lr)
    wd_schedule = CosineScheduler(**wd)
    momentum_schedule = CosineScheduler(**momentum)
    teacher_temp_schedule = CosineScheduler(**teacher_temp)
    last_layer_lr_schedule = CosineScheduler(**lr)

    last_layer_lr_schedule.schedule[
        : cfg.optim["freeze_last_layer_epochs"] * OFFICIAL_EPOCH_LENGTH
    ] = 0  # mimicking the original schedules

    logger.info("Schedulers ready.")

    return (
        lr_schedule,
        wd_schedule,
        momentum_schedule,
        teacher_temp_schedule,
        last_layer_lr_schedule,
    )


def apply_optim_scheduler(optimizer, lr, wd, last_layer_lr):
    for param_group in optimizer.param_groups:
        is_last_layer = param_group["is_last_layer"]
        lr_multiplier = param_group["lr_multiplier"]
        wd_multiplier = param_group["wd_multiplier"]
        param_group["weight_decay"] = wd * wd_multiplier
        param_group["lr"] = (last_layer_lr if is_last_layer else lr) * lr_multiplier


def do_test(cfg, model, iteration):
    new_state_dict = model.teacher.state_dict()

    if distributed.is_main_process():
        iterstring = str(iteration)
        eval_dir = os.path.join(cfg.train.output_dir, "eval", iterstring)
        os.makedirs(eval_dir, exist_ok=True)
        # save teacher checkpoint
        teacher_ckp_path = os.path.join(eval_dir, "teacher_checkpoint.pth")
        torch.save({"teacher": new_state_dict}, teacher_ckp_path)


def do_train(cfg, model, resume=False):
    model.train()
    inputs_dtype = torch.half
    fp16_scaler = model.fp16_scaler  # for mixed precision training

    # setup optimizer

    optimizer = build_optimizer(cfg, model.get_params_groups())
    (
        lr_schedule,
        wd_schedule,
        momentum_schedule,
        teacher_temp_schedule,
        last_layer_lr_schedule,
    ) = build_schedulers(cfg)

    # checkpointer
    checkpointer = FSDPCheckpointer(model, cfg.train.output_dir, optimizer=optimizer, save_to_disk=True)

    start_iter = checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1

    OFFICIAL_EPOCH_LENGTH = cfg.train.OFFICIAL_EPOCH_LENGTH
    max_iter = cfg.optim.epochs * OFFICIAL_EPOCH_LENGTH

    periodic_checkpointer = PeriodicCheckpointer(
        checkpointer,
        period=3 * OFFICIAL_EPOCH_LENGTH,
        max_iter=max_iter,
        max_to_keep=3,
    )

    # setup data preprocessing

    img_size = cfg.crops.global_crops_size
    patch_size = cfg.student.patch_size
    n_tokens = (img_size // patch_size) ** 2
    mask_generator = MaskingGenerator(
        input_size=(img_size // patch_size, img_size // patch_size),
        max_num_patches=0.5 * img_size // patch_size * img_size // patch_size,
    )

    data_transform = DataAugmentationDINO(
        cfg.crops.global_crops_scale,
        cfg.crops.local_crops_scale,
        cfg.crops.local_crops_number,
        global_crops_size=cfg.crops.global_crops_size,
        local_crops_size=cfg.crops.local_crops_size,
    )

    collate_fn = partial(
        collate_data_and_cast,
        mask_ratio_tuple=cfg.ibot.mask_ratio_min_max,
        mask_probability=cfg.ibot.mask_sample_probability,
        n_tokens=n_tokens,
        mask_generator=mask_generator,
        dtype=inputs_dtype,
    )

    # setup data loader

    dataset = make_dataset(
        dataset_str=cfg.train.dataset_path,
        transform=data_transform,
        target_transform=lambda _: (),
    )
    # sampler_type = SamplerType.INFINITE
    sampler_type = SamplerType.SHARDED_INFINITE
    data_loader = make_data_loader(
        dataset=dataset,
        batch_size=cfg.train.batch_size_per_gpu,
        num_workers=cfg.train.num_workers,
        shuffle=True,
        seed=start_iter,  # TODO: Fix this -- cfg.train.seed
        sampler_type=sampler_type,
        sampler_advance=0,  # TODO(qas): fix this -- start_iter * cfg.train.batch_size_per_gpu,
        drop_last=True,
        collate_fn=collate_fn,
    )

    # training loop

    iteration = start_iter

    logger.info("Starting training from iteration {}".format(start_iter))
    metrics_file = os.path.join(cfg.train.output_dir, "training_metrics.json")
    metric_logger = MetricLogger(delimiter="  ", output_file=metrics_file)
    header = "Training"

    for data in metric_logger.log_every(
        data_loader,
        10,
        header,
        max_iter,
        start_iter,
    ):
        current_batch_size = data["collated_global_crops"].shape[0] / 2
        if iteration > max_iter:
            return

        # apply schedules

        lr = lr_schedule[iteration]
        wd = wd_schedule[iteration]
        mom = momentum_schedule[iteration]
        teacher_temp = teacher_temp_schedule[iteration]
        last_layer_lr = last_layer_lr_schedule[iteration]
        apply_optim_scheduler(optimizer, lr, wd, last_layer_lr)

        # compute losses

        optimizer.zero_grad(set_to_none=True)
        loss_dict = model.forward_backward(data, teacher_temp=teacher_temp)

        # clip gradients

        if fp16_scaler is not None:
            if cfg.optim.clip_grad:
                fp16_scaler.unscale_(optimizer)
                for v in model.student.values():
                    v.clip_grad_norm_(cfg.optim.clip_grad)
            fp16_scaler.step(optimizer)
            fp16_scaler.update()
        else:
            if cfg.optim.clip_grad:
                for v in model.student.values():
                    v.clip_grad_norm_(cfg.optim.clip_grad)
            optimizer.step()

        # perform teacher EMA update

        model.update_teacher(mom)

        # logging

        if distributed.get_global_size() > 1:
            for v in loss_dict.values():
                torch.distributed.all_reduce(v)
        loss_dict_reduced = {k: v.item() / distributed.get_global_size() for k, v in loss_dict.items()}

        if math.isnan(sum(loss_dict_reduced.values())):
            logger.info("NaN detected")
            raise AssertionError
        losses_reduced = sum(loss for loss in loss_dict_reduced.values())

        metric_logger.update(lr=lr)
        metric_logger.update(wd=wd)
        metric_logger.update(mom=mom)
        metric_logger.update(last_layer_lr=last_layer_lr)
        metric_logger.update(current_batch_size=current_batch_size)
        metric_logger.update(total_loss=losses_reduced, **loss_dict_reduced)

        # checkpointing and testing

        if cfg.evaluation.eval_period_iterations > 0 and (iteration + 1) % cfg.evaluation.eval_period_iterations == 0:
            do_test(cfg, model, f"training_{iteration}")
            torch.cuda.synchronize()
        periodic_checkpointer.step(iteration)

        iteration = iteration + 1
    metric_logger.synchronize_between_processes()
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


def main(args):
    cfg = setup(args)

    model = SSLMetaArch(cfg).to(torch.device("cuda"))
    model.prepare_for_distributed_training()

    logger.info("Model:\n{}".format(model))
    if args.eval_only:
        iteration = (
            FSDPCheckpointer(model, save_dir=cfg.train.output_dir)
            .resume_or_load(cfg.MODEL.WEIGHTS, resume=not args.no_resume)
            .get("iteration", -1)
            + 1
        )
        return do_test(cfg, model, f"manual_{iteration}")

    do_train(cfg, model, resume=not args.no_resume)


if __name__ == "__main__":
    args = get_args_parser(add_help=True).parse_args()
    main(args)