File size: 29,268 Bytes
265ae36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

import copy
from functools import partial
import math
import warnings

import torch
import torch.nn as nn

from .ops import resize


# XXX: (Untested) replacement for mmcv.imdenormalize()
def _imdenormalize(img, mean, std, to_bgr=True):
    import numpy as np

    mean = mean.reshape(1, -1).astype(np.float64)
    std = std.reshape(1, -1).astype(np.float64)
    img = (img * std) + mean
    if to_bgr:
        img = img[::-1]
    return img


class DepthBaseDecodeHead(nn.Module):
    """Base class for BaseDecodeHead.

    Args:
        in_channels (List): Input channels.
        channels (int): Channels after modules, before conv_depth.
        conv_layer (nn.Module): Conv layers. Default: None.
        act_layer (nn.Module): Activation layers. Default: nn.ReLU.
        loss_decode (dict): Config of decode loss.
            Default: ().
        sampler (dict|None): The config of depth map sampler.
            Default: None.
        align_corners (bool): align_corners argument of F.interpolate.
            Default: False.
        min_depth (int): Min depth in dataset setting.
            Default: 1e-3.
        max_depth (int): Max depth in dataset setting.
            Default: None.
        norm_layer (dict|None): Norm layers.
            Default: None.
        classify (bool): Whether predict depth in a cls.-reg. manner.
            Default: False.
        n_bins (int): The number of bins used in cls. step.
            Default: 256.
        bins_strategy (str): The discrete strategy used in cls. step.
            Default: 'UD'.
        norm_strategy (str): The norm strategy on cls. probability
            distribution. Default: 'linear'
        scale_up (str): Whether predict depth in a scale-up manner.
            Default: False.
    """

    def __init__(
        self,
        in_channels,
        conv_layer=None,
        act_layer=nn.ReLU,
        channels=96,
        loss_decode=(),
        sampler=None,
        align_corners=False,
        min_depth=1e-3,
        max_depth=None,
        norm_layer=None,
        classify=False,
        n_bins=256,
        bins_strategy="UD",
        norm_strategy="linear",
        scale_up=False,
    ):
        super(DepthBaseDecodeHead, self).__init__()

        self.in_channels = in_channels
        self.channels = channels
        self.conf_layer = conv_layer
        self.act_layer = act_layer
        self.loss_decode = loss_decode
        self.align_corners = align_corners
        self.min_depth = min_depth
        self.max_depth = max_depth
        self.norm_layer = norm_layer
        self.classify = classify
        self.n_bins = n_bins
        self.scale_up = scale_up

        if self.classify:
            assert bins_strategy in ["UD", "SID"], "Support bins_strategy: UD, SID"
            assert norm_strategy in ["linear", "softmax", "sigmoid"], "Support norm_strategy: linear, softmax, sigmoid"

            self.bins_strategy = bins_strategy
            self.norm_strategy = norm_strategy
            self.softmax = nn.Softmax(dim=1)
            self.conv_depth = nn.Conv2d(channels, n_bins, kernel_size=3, padding=1, stride=1)
        else:
            self.conv_depth = nn.Conv2d(channels, 1, kernel_size=3, padding=1, stride=1)

        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()

    def forward(self, inputs, img_metas):
        """Placeholder of forward function."""
        pass

    def forward_train(self, img, inputs, img_metas, depth_gt):
        """Forward function for training.
        Args:
            inputs (list[Tensor]): List of multi-level img features.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `depth/datasets/pipelines/formatting.py:Collect`.
            depth_gt (Tensor): GT depth

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        depth_pred = self.forward(inputs, img_metas)
        losses = self.losses(depth_pred, depth_gt)

        log_imgs = self.log_images(img[0], depth_pred[0], depth_gt[0], img_metas[0])
        losses.update(**log_imgs)

        return losses

    def forward_test(self, inputs, img_metas):
        """Forward function for testing.
        Args:
            inputs (list[Tensor]): List of multi-level img features.
            img_metas (list[dict]): List of image info dict where each dict
                has: 'img_shape', 'scale_factor', 'flip', and may also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `depth/datasets/pipelines/formatting.py:Collect`.

        Returns:
            Tensor: Output depth map.
        """
        return self.forward(inputs, img_metas)

    def depth_pred(self, feat):
        """Prediction each pixel."""
        if self.classify:
            logit = self.conv_depth(feat)

            if self.bins_strategy == "UD":
                bins = torch.linspace(self.min_depth, self.max_depth, self.n_bins, device=feat.device)
            elif self.bins_strategy == "SID":
                bins = torch.logspace(self.min_depth, self.max_depth, self.n_bins, device=feat.device)

            # following Adabins, default linear
            if self.norm_strategy == "linear":
                logit = torch.relu(logit)
                eps = 0.1
                logit = logit + eps
                logit = logit / logit.sum(dim=1, keepdim=True)
            elif self.norm_strategy == "softmax":
                logit = torch.softmax(logit, dim=1)
            elif self.norm_strategy == "sigmoid":
                logit = torch.sigmoid(logit)
                logit = logit / logit.sum(dim=1, keepdim=True)

            output = torch.einsum("ikmn,k->imn", [logit, bins]).unsqueeze(dim=1)

        else:
            if self.scale_up:
                output = self.sigmoid(self.conv_depth(feat)) * self.max_depth
            else:
                output = self.relu(self.conv_depth(feat)) + self.min_depth
        return output

    def losses(self, depth_pred, depth_gt):
        """Compute depth loss."""
        loss = dict()
        depth_pred = resize(
            input=depth_pred, size=depth_gt.shape[2:], mode="bilinear", align_corners=self.align_corners, warning=False
        )
        if not isinstance(self.loss_decode, nn.ModuleList):
            losses_decode = [self.loss_decode]
        else:
            losses_decode = self.loss_decode
        for loss_decode in losses_decode:
            if loss_decode.loss_name not in loss:
                loss[loss_decode.loss_name] = loss_decode(depth_pred, depth_gt)
            else:
                loss[loss_decode.loss_name] += loss_decode(depth_pred, depth_gt)
        return loss

    def log_images(self, img_path, depth_pred, depth_gt, img_meta):
        import numpy as np

        show_img = copy.deepcopy(img_path.detach().cpu().permute(1, 2, 0))
        show_img = show_img.numpy().astype(np.float32)
        show_img = _imdenormalize(
            show_img,
            img_meta["img_norm_cfg"]["mean"],
            img_meta["img_norm_cfg"]["std"],
            img_meta["img_norm_cfg"]["to_rgb"],
        )
        show_img = np.clip(show_img, 0, 255)
        show_img = show_img.astype(np.uint8)
        show_img = show_img[:, :, ::-1]
        show_img = show_img.transpose(0, 2, 1)
        show_img = show_img.transpose(1, 0, 2)

        depth_pred = depth_pred / torch.max(depth_pred)
        depth_gt = depth_gt / torch.max(depth_gt)

        depth_pred_color = copy.deepcopy(depth_pred.detach().cpu())
        depth_gt_color = copy.deepcopy(depth_gt.detach().cpu())

        return {"img_rgb": show_img, "img_depth_pred": depth_pred_color, "img_depth_gt": depth_gt_color}


class BNHead(DepthBaseDecodeHead):
    """Just a batchnorm."""

    def __init__(self, input_transform="resize_concat", in_index=(0, 1, 2, 3), upsample=1, **kwargs):
        super().__init__(**kwargs)
        self.input_transform = input_transform
        self.in_index = in_index
        self.upsample = upsample
        # self.bn = nn.SyncBatchNorm(self.in_channels)
        if self.classify:
            self.conv_depth = nn.Conv2d(self.channels, self.n_bins, kernel_size=1, padding=0, stride=1)
        else:
            self.conv_depth = nn.Conv2d(self.channels, 1, kernel_size=1, padding=0, stride=1)

    def _transform_inputs(self, inputs):
        """Transform inputs for decoder.
        Args:
            inputs (list[Tensor]): List of multi-level img features.
        Returns:
            Tensor: The transformed inputs
        """

        if "concat" in self.input_transform:
            inputs = [inputs[i] for i in self.in_index]
            if "resize" in self.input_transform:
                inputs = [
                    resize(
                        input=x,
                        size=[s * self.upsample for s in inputs[0].shape[2:]],
                        mode="bilinear",
                        align_corners=self.align_corners,
                    )
                    for x in inputs
                ]
            inputs = torch.cat(inputs, dim=1)
        elif self.input_transform == "multiple_select":
            inputs = [inputs[i] for i in self.in_index]
        else:
            inputs = inputs[self.in_index]

        return inputs

    def _forward_feature(self, inputs, img_metas=None, **kwargs):
        """Forward function for feature maps before classifying each pixel with
        ``self.cls_seg`` fc.
        Args:
            inputs (list[Tensor]): List of multi-level img features.
        Returns:
            feats (Tensor): A tensor of shape (batch_size, self.channels,
                H, W) which is feature map for last layer of decoder head.
        """
        # accept lists (for cls token)
        inputs = list(inputs)
        for i, x in enumerate(inputs):
            if len(x) == 2:
                x, cls_token = x[0], x[1]
                if len(x.shape) == 2:
                    x = x[:, :, None, None]
                cls_token = cls_token[:, :, None, None].expand_as(x)
                inputs[i] = torch.cat((x, cls_token), 1)
            else:
                x = x[0]
                if len(x.shape) == 2:
                    x = x[:, :, None, None]
                inputs[i] = x
        x = self._transform_inputs(inputs)
        # feats = self.bn(x)
        return x

    def forward(self, inputs, img_metas=None, **kwargs):
        """Forward function."""
        output = self._forward_feature(inputs, img_metas=img_metas, **kwargs)
        output = self.depth_pred(output)
        return output


class ConvModule(nn.Module):
    """A conv block that bundles conv/norm/activation layers.

    This block simplifies the usage of convolution layers, which are commonly
    used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
    It is based upon three build methods: `build_conv_layer()`,
    `build_norm_layer()` and `build_activation_layer()`.

    Besides, we add some additional features in this module.
    1. Automatically set `bias` of the conv layer.
    2. Spectral norm is supported.
    3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only
    supports zero and circular padding, and we add "reflect" padding mode.

    Args:
        in_channels (int): Number of channels in the input feature map.
            Same as that in ``nn._ConvNd``.
        out_channels (int): Number of channels produced by the convolution.
            Same as that in ``nn._ConvNd``.
        kernel_size (int | tuple[int]): Size of the convolving kernel.
            Same as that in ``nn._ConvNd``.
        stride (int | tuple[int]): Stride of the convolution.
            Same as that in ``nn._ConvNd``.
        padding (int | tuple[int]): Zero-padding added to both sides of
            the input. Same as that in ``nn._ConvNd``.
        dilation (int | tuple[int]): Spacing between kernel elements.
            Same as that in ``nn._ConvNd``.
        groups (int): Number of blocked connections from input channels to
            output channels. Same as that in ``nn._ConvNd``.
        bias (bool | str): If specified as `auto`, it will be decided by the
            norm_layer. Bias will be set as True if `norm_layer` is None, otherwise
            False. Default: "auto".
        conv_layer (nn.Module): Convolution layer. Default: None,
            which means using conv2d.
        norm_layer (nn.Module): Normalization layer. Default: None.
        act_layer (nn.Module): Activation layer. Default: nn.ReLU.
        inplace (bool): Whether to use inplace mode for activation.
            Default: True.
        with_spectral_norm (bool): Whether use spectral norm in conv module.
            Default: False.
        padding_mode (str): If the `padding_mode` has not been supported by
            current `Conv2d` in PyTorch, we will use our own padding layer
            instead. Currently, we support ['zeros', 'circular'] with official
            implementation and ['reflect'] with our own implementation.
            Default: 'zeros'.
        order (tuple[str]): The order of conv/norm/activation layers. It is a
            sequence of "conv", "norm" and "act". Common examples are
            ("conv", "norm", "act") and ("act", "conv", "norm").
            Default: ('conv', 'norm', 'act').
    """

    _abbr_ = "conv_block"

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=1,
        bias="auto",
        conv_layer=nn.Conv2d,
        norm_layer=None,
        act_layer=nn.ReLU,
        inplace=True,
        with_spectral_norm=False,
        padding_mode="zeros",
        order=("conv", "norm", "act"),
    ):
        super(ConvModule, self).__init__()
        official_padding_mode = ["zeros", "circular"]
        self.conv_layer = conv_layer
        self.norm_layer = norm_layer
        self.act_layer = act_layer
        self.inplace = inplace
        self.with_spectral_norm = with_spectral_norm
        self.with_explicit_padding = padding_mode not in official_padding_mode
        self.order = order
        assert isinstance(self.order, tuple) and len(self.order) == 3
        assert set(order) == set(["conv", "norm", "act"])

        self.with_norm = norm_layer is not None
        self.with_activation = act_layer is not None
        # if the conv layer is before a norm layer, bias is unnecessary.
        if bias == "auto":
            bias = not self.with_norm
        self.with_bias = bias

        if self.with_explicit_padding:
            if padding_mode == "zeros":
                padding_layer = nn.ZeroPad2d
            else:
                raise AssertionError(f"Unsupported padding mode: {padding_mode}")
            self.pad = padding_layer(padding)

        # reset padding to 0 for conv module
        conv_padding = 0 if self.with_explicit_padding else padding
        # build convolution layer
        self.conv = self.conv_layer(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=conv_padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )
        # export the attributes of self.conv to a higher level for convenience
        self.in_channels = self.conv.in_channels
        self.out_channels = self.conv.out_channels
        self.kernel_size = self.conv.kernel_size
        self.stride = self.conv.stride
        self.padding = padding
        self.dilation = self.conv.dilation
        self.transposed = self.conv.transposed
        self.output_padding = self.conv.output_padding
        self.groups = self.conv.groups

        if self.with_spectral_norm:
            self.conv = nn.utils.spectral_norm(self.conv)

        # build normalization layers
        if self.with_norm:
            # norm layer is after conv layer
            if order.index("norm") > order.index("conv"):
                norm_channels = out_channels
            else:
                norm_channels = in_channels
            norm = partial(norm_layer, num_features=norm_channels)
            self.add_module("norm", norm)
            if self.with_bias:
                from torch.nnModules.batchnorm import _BatchNorm
                from torch.nnModules.instancenorm import _InstanceNorm

                if isinstance(norm, (_BatchNorm, _InstanceNorm)):
                    warnings.warn("Unnecessary conv bias before batch/instance norm")
        else:
            self.norm_name = None

        # build activation layer
        if self.with_activation:
            # nn.Tanh has no 'inplace' argument
            # (nn.Tanh, nn.PReLU, nn.Sigmoid, nn.HSigmoid, nn.Swish, nn.GELU)
            if not isinstance(act_layer, (nn.Tanh, nn.PReLU, nn.Sigmoid, nn.GELU)):
                act_layer = partial(act_layer, inplace=inplace)
            self.activate = act_layer()

        # Use msra init by default
        self.init_weights()

    @property
    def norm(self):
        if self.norm_name:
            return getattr(self, self.norm_name)
        else:
            return None

    def init_weights(self):
        # 1. It is mainly for customized conv layers with their own
        #    initialization manners by calling their own ``init_weights()``,
        #    and we do not want ConvModule to override the initialization.
        # 2. For customized conv layers without their own initialization
        #    manners (that is, they don't have their own ``init_weights()``)
        #    and PyTorch's conv layers, they will be initialized by
        #    this method with default ``kaiming_init``.
        # Note: For PyTorch's conv layers, they will be overwritten by our
        #    initialization implementation using default ``kaiming_init``.
        if not hasattr(self.conv, "init_weights"):
            if self.with_activation and isinstance(self.act_layer, nn.LeakyReLU):
                nonlinearity = "leaky_relu"
                a = 0.01  # XXX: default negative_slope
            else:
                nonlinearity = "relu"
                a = 0
            if hasattr(self.conv, "weight") and self.conv.weight is not None:
                nn.init.kaiming_normal_(self.conv.weight, a=a, mode="fan_out", nonlinearity=nonlinearity)
            if hasattr(self.conv, "bias") and self.conv.bias is not None:
                nn.init.constant_(self.conv.bias, 0)
        if self.with_norm:
            if hasattr(self.norm, "weight") and self.norm.weight is not None:
                nn.init.constant_(self.norm.weight, 1)
            if hasattr(self.norm, "bias") and self.norm.bias is not None:
                nn.init.constant_(self.norm.bias, 0)

    def forward(self, x, activate=True, norm=True):
        for layer in self.order:
            if layer == "conv":
                if self.with_explicit_padding:
                    x = self.pad(x)
                x = self.conv(x)
            elif layer == "norm" and norm and self.with_norm:
                x = self.norm(x)
            elif layer == "act" and activate and self.with_activation:
                x = self.activate(x)
        return x


class Interpolate(nn.Module):
    def __init__(self, scale_factor, mode, align_corners=False):
        super(Interpolate, self).__init__()
        self.interp = nn.functional.interpolate
        self.scale_factor = scale_factor
        self.mode = mode
        self.align_corners = align_corners

    def forward(self, x):
        x = self.interp(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners)
        return x


class HeadDepth(nn.Module):
    def __init__(self, features):
        super(HeadDepth, self).__init__()
        self.head = nn.Sequential(
            nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
            Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
            nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
        )

    def forward(self, x):
        x = self.head(x)
        return x


class ReassembleBlocks(nn.Module):
    """ViTPostProcessBlock, process cls_token in ViT backbone output and
    rearrange the feature vector to feature map.
    Args:
        in_channels (int): ViT feature channels. Default: 768.
        out_channels (List): output channels of each stage.
            Default: [96, 192, 384, 768].
        readout_type (str): Type of readout operation. Default: 'ignore'.
        patch_size (int): The patch size. Default: 16.
    """

    def __init__(self, in_channels=768, out_channels=[96, 192, 384, 768], readout_type="ignore", patch_size=16):
        super(ReassembleBlocks, self).__init__()

        assert readout_type in ["ignore", "add", "project"]
        self.readout_type = readout_type
        self.patch_size = patch_size

        self.projects = nn.ModuleList(
            [
                ConvModule(
                    in_channels=in_channels,
                    out_channels=out_channel,
                    kernel_size=1,
                    act_layer=None,
                )
                for out_channel in out_channels
            ]
        )

        self.resize_layers = nn.ModuleList(
            [
                nn.ConvTranspose2d(
                    in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
                ),
                nn.ConvTranspose2d(
                    in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
                ),
                nn.Identity(),
                nn.Conv2d(
                    in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
                ),
            ]
        )
        if self.readout_type == "project":
            self.readout_projects = nn.ModuleList()
            for _ in range(len(self.projects)):
                self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))

    def forward(self, inputs):
        assert isinstance(inputs, list)
        out = []
        for i, x in enumerate(inputs):
            assert len(x) == 2
            x, cls_token = x[0], x[1]
            feature_shape = x.shape
            if self.readout_type == "project":
                x = x.flatten(2).permute((0, 2, 1))
                readout = cls_token.unsqueeze(1).expand_as(x)
                x = self.readout_projects[i](torch.cat((x, readout), -1))
                x = x.permute(0, 2, 1).reshape(feature_shape)
            elif self.readout_type == "add":
                x = x.flatten(2) + cls_token.unsqueeze(-1)
                x = x.reshape(feature_shape)
            else:
                pass
            x = self.projects[i](x)
            x = self.resize_layers[i](x)
            out.append(x)
        return out


class PreActResidualConvUnit(nn.Module):
    """ResidualConvUnit, pre-activate residual unit.
    Args:
        in_channels (int): number of channels in the input feature map.
        act_layer (nn.Module): activation layer.
        norm_layer (nn.Module): norm layer.
        stride (int): stride of the first block. Default: 1
        dilation (int): dilation rate for convs layers. Default: 1.
    """

    def __init__(self, in_channels, act_layer, norm_layer, stride=1, dilation=1):
        super(PreActResidualConvUnit, self).__init__()

        self.conv1 = ConvModule(
            in_channels,
            in_channels,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            norm_layer=norm_layer,
            act_layer=act_layer,
            bias=False,
            order=("act", "conv", "norm"),
        )

        self.conv2 = ConvModule(
            in_channels,
            in_channels,
            3,
            padding=1,
            norm_layer=norm_layer,
            act_layer=act_layer,
            bias=False,
            order=("act", "conv", "norm"),
        )

    def forward(self, inputs):
        inputs_ = inputs.clone()
        x = self.conv1(inputs)
        x = self.conv2(x)
        return x + inputs_


class FeatureFusionBlock(nn.Module):
    """FeatureFusionBlock, merge feature map from different stages.
    Args:
        in_channels (int): Input channels.
        act_layer (nn.Module): activation layer for ResidualConvUnit.
        norm_layer (nn.Module): normalization layer.
        expand (bool): Whether expand the channels in post process block.
            Default: False.
        align_corners (bool): align_corner setting for bilinear upsample.
            Default: True.
    """

    def __init__(self, in_channels, act_layer, norm_layer, expand=False, align_corners=True):
        super(FeatureFusionBlock, self).__init__()

        self.in_channels = in_channels
        self.expand = expand
        self.align_corners = align_corners

        self.out_channels = in_channels
        if self.expand:
            self.out_channels = in_channels // 2

        self.project = ConvModule(self.in_channels, self.out_channels, kernel_size=1, act_layer=None, bias=True)

        self.res_conv_unit1 = PreActResidualConvUnit(
            in_channels=self.in_channels, act_layer=act_layer, norm_layer=norm_layer
        )
        self.res_conv_unit2 = PreActResidualConvUnit(
            in_channels=self.in_channels, act_layer=act_layer, norm_layer=norm_layer
        )

    def forward(self, *inputs):
        x = inputs[0]
        if len(inputs) == 2:
            if x.shape != inputs[1].shape:
                res = resize(inputs[1], size=(x.shape[2], x.shape[3]), mode="bilinear", align_corners=False)
            else:
                res = inputs[1]
            x = x + self.res_conv_unit1(res)
        x = self.res_conv_unit2(x)
        x = resize(x, scale_factor=2, mode="bilinear", align_corners=self.align_corners)
        x = self.project(x)
        return x


class DPTHead(DepthBaseDecodeHead):
    """Vision Transformers for Dense Prediction.
    This head is implemented of `DPT <https://arxiv.org/abs/2103.13413>`_.
    Args:
        embed_dims (int): The embed dimension of the ViT backbone.
            Default: 768.
        post_process_channels (List): Out channels of post process conv
            layers. Default: [96, 192, 384, 768].
        readout_type (str): Type of readout operation. Default: 'ignore'.
        patch_size (int): The patch size. Default: 16.
        expand_channels (bool): Whether expand the channels in post process
            block. Default: False.
    """

    def __init__(
        self,
        embed_dims=768,
        post_process_channels=[96, 192, 384, 768],
        readout_type="ignore",
        patch_size=16,
        expand_channels=False,
        **kwargs,
    ):
        super(DPTHead, self).__init__(**kwargs)

        self.in_channels = self.in_channels
        self.expand_channels = expand_channels
        self.reassemble_blocks = ReassembleBlocks(embed_dims, post_process_channels, readout_type, patch_size)

        self.post_process_channels = [
            channel * math.pow(2, i) if expand_channels else channel for i, channel in enumerate(post_process_channels)
        ]
        self.convs = nn.ModuleList()
        for channel in self.post_process_channels:
            self.convs.append(ConvModule(channel, self.channels, kernel_size=3, padding=1, act_layer=None, bias=False))
        self.fusion_blocks = nn.ModuleList()
        for _ in range(len(self.convs)):
            self.fusion_blocks.append(FeatureFusionBlock(self.channels, self.act_layer, self.norm_layer))
        self.fusion_blocks[0].res_conv_unit1 = None
        self.project = ConvModule(self.channels, self.channels, kernel_size=3, padding=1, norm_layer=self.norm_layer)
        self.num_fusion_blocks = len(self.fusion_blocks)
        self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers)
        self.num_post_process_channels = len(self.post_process_channels)
        assert self.num_fusion_blocks == self.num_reassemble_blocks
        assert self.num_reassemble_blocks == self.num_post_process_channels
        self.conv_depth = HeadDepth(self.channels)

    def forward(self, inputs, img_metas):
        assert len(inputs) == self.num_reassemble_blocks
        x = [inp for inp in inputs]
        x = self.reassemble_blocks(x)
        x = [self.convs[i](feature) for i, feature in enumerate(x)]
        out = self.fusion_blocks[0](x[-1])
        for i in range(1, len(self.fusion_blocks)):
            out = self.fusion_blocks[i](out, x[-(i + 1)])
        out = self.project(out)
        out = self.depth_pred(out)
        return out