Spaces:
Sleeping
Sleeping
File size: 29,268 Bytes
265ae36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
import copy
from functools import partial
import math
import warnings
import torch
import torch.nn as nn
from .ops import resize
# XXX: (Untested) replacement for mmcv.imdenormalize()
def _imdenormalize(img, mean, std, to_bgr=True):
import numpy as np
mean = mean.reshape(1, -1).astype(np.float64)
std = std.reshape(1, -1).astype(np.float64)
img = (img * std) + mean
if to_bgr:
img = img[::-1]
return img
class DepthBaseDecodeHead(nn.Module):
"""Base class for BaseDecodeHead.
Args:
in_channels (List): Input channels.
channels (int): Channels after modules, before conv_depth.
conv_layer (nn.Module): Conv layers. Default: None.
act_layer (nn.Module): Activation layers. Default: nn.ReLU.
loss_decode (dict): Config of decode loss.
Default: ().
sampler (dict|None): The config of depth map sampler.
Default: None.
align_corners (bool): align_corners argument of F.interpolate.
Default: False.
min_depth (int): Min depth in dataset setting.
Default: 1e-3.
max_depth (int): Max depth in dataset setting.
Default: None.
norm_layer (dict|None): Norm layers.
Default: None.
classify (bool): Whether predict depth in a cls.-reg. manner.
Default: False.
n_bins (int): The number of bins used in cls. step.
Default: 256.
bins_strategy (str): The discrete strategy used in cls. step.
Default: 'UD'.
norm_strategy (str): The norm strategy on cls. probability
distribution. Default: 'linear'
scale_up (str): Whether predict depth in a scale-up manner.
Default: False.
"""
def __init__(
self,
in_channels,
conv_layer=None,
act_layer=nn.ReLU,
channels=96,
loss_decode=(),
sampler=None,
align_corners=False,
min_depth=1e-3,
max_depth=None,
norm_layer=None,
classify=False,
n_bins=256,
bins_strategy="UD",
norm_strategy="linear",
scale_up=False,
):
super(DepthBaseDecodeHead, self).__init__()
self.in_channels = in_channels
self.channels = channels
self.conf_layer = conv_layer
self.act_layer = act_layer
self.loss_decode = loss_decode
self.align_corners = align_corners
self.min_depth = min_depth
self.max_depth = max_depth
self.norm_layer = norm_layer
self.classify = classify
self.n_bins = n_bins
self.scale_up = scale_up
if self.classify:
assert bins_strategy in ["UD", "SID"], "Support bins_strategy: UD, SID"
assert norm_strategy in ["linear", "softmax", "sigmoid"], "Support norm_strategy: linear, softmax, sigmoid"
self.bins_strategy = bins_strategy
self.norm_strategy = norm_strategy
self.softmax = nn.Softmax(dim=1)
self.conv_depth = nn.Conv2d(channels, n_bins, kernel_size=3, padding=1, stride=1)
else:
self.conv_depth = nn.Conv2d(channels, 1, kernel_size=3, padding=1, stride=1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, inputs, img_metas):
"""Placeholder of forward function."""
pass
def forward_train(self, img, inputs, img_metas, depth_gt):
"""Forward function for training.
Args:
inputs (list[Tensor]): List of multi-level img features.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`depth/datasets/pipelines/formatting.py:Collect`.
depth_gt (Tensor): GT depth
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
depth_pred = self.forward(inputs, img_metas)
losses = self.losses(depth_pred, depth_gt)
log_imgs = self.log_images(img[0], depth_pred[0], depth_gt[0], img_metas[0])
losses.update(**log_imgs)
return losses
def forward_test(self, inputs, img_metas):
"""Forward function for testing.
Args:
inputs (list[Tensor]): List of multi-level img features.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`depth/datasets/pipelines/formatting.py:Collect`.
Returns:
Tensor: Output depth map.
"""
return self.forward(inputs, img_metas)
def depth_pred(self, feat):
"""Prediction each pixel."""
if self.classify:
logit = self.conv_depth(feat)
if self.bins_strategy == "UD":
bins = torch.linspace(self.min_depth, self.max_depth, self.n_bins, device=feat.device)
elif self.bins_strategy == "SID":
bins = torch.logspace(self.min_depth, self.max_depth, self.n_bins, device=feat.device)
# following Adabins, default linear
if self.norm_strategy == "linear":
logit = torch.relu(logit)
eps = 0.1
logit = logit + eps
logit = logit / logit.sum(dim=1, keepdim=True)
elif self.norm_strategy == "softmax":
logit = torch.softmax(logit, dim=1)
elif self.norm_strategy == "sigmoid":
logit = torch.sigmoid(logit)
logit = logit / logit.sum(dim=1, keepdim=True)
output = torch.einsum("ikmn,k->imn", [logit, bins]).unsqueeze(dim=1)
else:
if self.scale_up:
output = self.sigmoid(self.conv_depth(feat)) * self.max_depth
else:
output = self.relu(self.conv_depth(feat)) + self.min_depth
return output
def losses(self, depth_pred, depth_gt):
"""Compute depth loss."""
loss = dict()
depth_pred = resize(
input=depth_pred, size=depth_gt.shape[2:], mode="bilinear", align_corners=self.align_corners, warning=False
)
if not isinstance(self.loss_decode, nn.ModuleList):
losses_decode = [self.loss_decode]
else:
losses_decode = self.loss_decode
for loss_decode in losses_decode:
if loss_decode.loss_name not in loss:
loss[loss_decode.loss_name] = loss_decode(depth_pred, depth_gt)
else:
loss[loss_decode.loss_name] += loss_decode(depth_pred, depth_gt)
return loss
def log_images(self, img_path, depth_pred, depth_gt, img_meta):
import numpy as np
show_img = copy.deepcopy(img_path.detach().cpu().permute(1, 2, 0))
show_img = show_img.numpy().astype(np.float32)
show_img = _imdenormalize(
show_img,
img_meta["img_norm_cfg"]["mean"],
img_meta["img_norm_cfg"]["std"],
img_meta["img_norm_cfg"]["to_rgb"],
)
show_img = np.clip(show_img, 0, 255)
show_img = show_img.astype(np.uint8)
show_img = show_img[:, :, ::-1]
show_img = show_img.transpose(0, 2, 1)
show_img = show_img.transpose(1, 0, 2)
depth_pred = depth_pred / torch.max(depth_pred)
depth_gt = depth_gt / torch.max(depth_gt)
depth_pred_color = copy.deepcopy(depth_pred.detach().cpu())
depth_gt_color = copy.deepcopy(depth_gt.detach().cpu())
return {"img_rgb": show_img, "img_depth_pred": depth_pred_color, "img_depth_gt": depth_gt_color}
class BNHead(DepthBaseDecodeHead):
"""Just a batchnorm."""
def __init__(self, input_transform="resize_concat", in_index=(0, 1, 2, 3), upsample=1, **kwargs):
super().__init__(**kwargs)
self.input_transform = input_transform
self.in_index = in_index
self.upsample = upsample
# self.bn = nn.SyncBatchNorm(self.in_channels)
if self.classify:
self.conv_depth = nn.Conv2d(self.channels, self.n_bins, kernel_size=1, padding=0, stride=1)
else:
self.conv_depth = nn.Conv2d(self.channels, 1, kernel_size=1, padding=0, stride=1)
def _transform_inputs(self, inputs):
"""Transform inputs for decoder.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
Tensor: The transformed inputs
"""
if "concat" in self.input_transform:
inputs = [inputs[i] for i in self.in_index]
if "resize" in self.input_transform:
inputs = [
resize(
input=x,
size=[s * self.upsample for s in inputs[0].shape[2:]],
mode="bilinear",
align_corners=self.align_corners,
)
for x in inputs
]
inputs = torch.cat(inputs, dim=1)
elif self.input_transform == "multiple_select":
inputs = [inputs[i] for i in self.in_index]
else:
inputs = inputs[self.in_index]
return inputs
def _forward_feature(self, inputs, img_metas=None, **kwargs):
"""Forward function for feature maps before classifying each pixel with
``self.cls_seg`` fc.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
feats (Tensor): A tensor of shape (batch_size, self.channels,
H, W) which is feature map for last layer of decoder head.
"""
# accept lists (for cls token)
inputs = list(inputs)
for i, x in enumerate(inputs):
if len(x) == 2:
x, cls_token = x[0], x[1]
if len(x.shape) == 2:
x = x[:, :, None, None]
cls_token = cls_token[:, :, None, None].expand_as(x)
inputs[i] = torch.cat((x, cls_token), 1)
else:
x = x[0]
if len(x.shape) == 2:
x = x[:, :, None, None]
inputs[i] = x
x = self._transform_inputs(inputs)
# feats = self.bn(x)
return x
def forward(self, inputs, img_metas=None, **kwargs):
"""Forward function."""
output = self._forward_feature(inputs, img_metas=img_metas, **kwargs)
output = self.depth_pred(output)
return output
class ConvModule(nn.Module):
"""A conv block that bundles conv/norm/activation layers.
This block simplifies the usage of convolution layers, which are commonly
used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
It is based upon three build methods: `build_conv_layer()`,
`build_norm_layer()` and `build_activation_layer()`.
Besides, we add some additional features in this module.
1. Automatically set `bias` of the conv layer.
2. Spectral norm is supported.
3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only
supports zero and circular padding, and we add "reflect" padding mode.
Args:
in_channels (int): Number of channels in the input feature map.
Same as that in ``nn._ConvNd``.
out_channels (int): Number of channels produced by the convolution.
Same as that in ``nn._ConvNd``.
kernel_size (int | tuple[int]): Size of the convolving kernel.
Same as that in ``nn._ConvNd``.
stride (int | tuple[int]): Stride of the convolution.
Same as that in ``nn._ConvNd``.
padding (int | tuple[int]): Zero-padding added to both sides of
the input. Same as that in ``nn._ConvNd``.
dilation (int | tuple[int]): Spacing between kernel elements.
Same as that in ``nn._ConvNd``.
groups (int): Number of blocked connections from input channels to
output channels. Same as that in ``nn._ConvNd``.
bias (bool | str): If specified as `auto`, it will be decided by the
norm_layer. Bias will be set as True if `norm_layer` is None, otherwise
False. Default: "auto".
conv_layer (nn.Module): Convolution layer. Default: None,
which means using conv2d.
norm_layer (nn.Module): Normalization layer. Default: None.
act_layer (nn.Module): Activation layer. Default: nn.ReLU.
inplace (bool): Whether to use inplace mode for activation.
Default: True.
with_spectral_norm (bool): Whether use spectral norm in conv module.
Default: False.
padding_mode (str): If the `padding_mode` has not been supported by
current `Conv2d` in PyTorch, we will use our own padding layer
instead. Currently, we support ['zeros', 'circular'] with official
implementation and ['reflect'] with our own implementation.
Default: 'zeros'.
order (tuple[str]): The order of conv/norm/activation layers. It is a
sequence of "conv", "norm" and "act". Common examples are
("conv", "norm", "act") and ("act", "conv", "norm").
Default: ('conv', 'norm', 'act').
"""
_abbr_ = "conv_block"
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias="auto",
conv_layer=nn.Conv2d,
norm_layer=None,
act_layer=nn.ReLU,
inplace=True,
with_spectral_norm=False,
padding_mode="zeros",
order=("conv", "norm", "act"),
):
super(ConvModule, self).__init__()
official_padding_mode = ["zeros", "circular"]
self.conv_layer = conv_layer
self.norm_layer = norm_layer
self.act_layer = act_layer
self.inplace = inplace
self.with_spectral_norm = with_spectral_norm
self.with_explicit_padding = padding_mode not in official_padding_mode
self.order = order
assert isinstance(self.order, tuple) and len(self.order) == 3
assert set(order) == set(["conv", "norm", "act"])
self.with_norm = norm_layer is not None
self.with_activation = act_layer is not None
# if the conv layer is before a norm layer, bias is unnecessary.
if bias == "auto":
bias = not self.with_norm
self.with_bias = bias
if self.with_explicit_padding:
if padding_mode == "zeros":
padding_layer = nn.ZeroPad2d
else:
raise AssertionError(f"Unsupported padding mode: {padding_mode}")
self.pad = padding_layer(padding)
# reset padding to 0 for conv module
conv_padding = 0 if self.with_explicit_padding else padding
# build convolution layer
self.conv = self.conv_layer(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=conv_padding,
dilation=dilation,
groups=groups,
bias=bias,
)
# export the attributes of self.conv to a higher level for convenience
self.in_channels = self.conv.in_channels
self.out_channels = self.conv.out_channels
self.kernel_size = self.conv.kernel_size
self.stride = self.conv.stride
self.padding = padding
self.dilation = self.conv.dilation
self.transposed = self.conv.transposed
self.output_padding = self.conv.output_padding
self.groups = self.conv.groups
if self.with_spectral_norm:
self.conv = nn.utils.spectral_norm(self.conv)
# build normalization layers
if self.with_norm:
# norm layer is after conv layer
if order.index("norm") > order.index("conv"):
norm_channels = out_channels
else:
norm_channels = in_channels
norm = partial(norm_layer, num_features=norm_channels)
self.add_module("norm", norm)
if self.with_bias:
from torch.nnModules.batchnorm import _BatchNorm
from torch.nnModules.instancenorm import _InstanceNorm
if isinstance(norm, (_BatchNorm, _InstanceNorm)):
warnings.warn("Unnecessary conv bias before batch/instance norm")
else:
self.norm_name = None
# build activation layer
if self.with_activation:
# nn.Tanh has no 'inplace' argument
# (nn.Tanh, nn.PReLU, nn.Sigmoid, nn.HSigmoid, nn.Swish, nn.GELU)
if not isinstance(act_layer, (nn.Tanh, nn.PReLU, nn.Sigmoid, nn.GELU)):
act_layer = partial(act_layer, inplace=inplace)
self.activate = act_layer()
# Use msra init by default
self.init_weights()
@property
def norm(self):
if self.norm_name:
return getattr(self, self.norm_name)
else:
return None
def init_weights(self):
# 1. It is mainly for customized conv layers with their own
# initialization manners by calling their own ``init_weights()``,
# and we do not want ConvModule to override the initialization.
# 2. For customized conv layers without their own initialization
# manners (that is, they don't have their own ``init_weights()``)
# and PyTorch's conv layers, they will be initialized by
# this method with default ``kaiming_init``.
# Note: For PyTorch's conv layers, they will be overwritten by our
# initialization implementation using default ``kaiming_init``.
if not hasattr(self.conv, "init_weights"):
if self.with_activation and isinstance(self.act_layer, nn.LeakyReLU):
nonlinearity = "leaky_relu"
a = 0.01 # XXX: default negative_slope
else:
nonlinearity = "relu"
a = 0
if hasattr(self.conv, "weight") and self.conv.weight is not None:
nn.init.kaiming_normal_(self.conv.weight, a=a, mode="fan_out", nonlinearity=nonlinearity)
if hasattr(self.conv, "bias") and self.conv.bias is not None:
nn.init.constant_(self.conv.bias, 0)
if self.with_norm:
if hasattr(self.norm, "weight") and self.norm.weight is not None:
nn.init.constant_(self.norm.weight, 1)
if hasattr(self.norm, "bias") and self.norm.bias is not None:
nn.init.constant_(self.norm.bias, 0)
def forward(self, x, activate=True, norm=True):
for layer in self.order:
if layer == "conv":
if self.with_explicit_padding:
x = self.pad(x)
x = self.conv(x)
elif layer == "norm" and norm and self.with_norm:
x = self.norm(x)
elif layer == "act" and activate and self.with_activation:
x = self.activate(x)
return x
class Interpolate(nn.Module):
def __init__(self, scale_factor, mode, align_corners=False):
super(Interpolate, self).__init__()
self.interp = nn.functional.interpolate
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
x = self.interp(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners)
return x
class HeadDepth(nn.Module):
def __init__(self, features):
super(HeadDepth, self).__init__()
self.head = nn.Sequential(
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
)
def forward(self, x):
x = self.head(x)
return x
class ReassembleBlocks(nn.Module):
"""ViTPostProcessBlock, process cls_token in ViT backbone output and
rearrange the feature vector to feature map.
Args:
in_channels (int): ViT feature channels. Default: 768.
out_channels (List): output channels of each stage.
Default: [96, 192, 384, 768].
readout_type (str): Type of readout operation. Default: 'ignore'.
patch_size (int): The patch size. Default: 16.
"""
def __init__(self, in_channels=768, out_channels=[96, 192, 384, 768], readout_type="ignore", patch_size=16):
super(ReassembleBlocks, self).__init__()
assert readout_type in ["ignore", "add", "project"]
self.readout_type = readout_type
self.patch_size = patch_size
self.projects = nn.ModuleList(
[
ConvModule(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
act_layer=None,
)
for out_channel in out_channels
]
)
self.resize_layers = nn.ModuleList(
[
nn.ConvTranspose2d(
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
),
nn.ConvTranspose2d(
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
),
]
)
if self.readout_type == "project":
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
def forward(self, inputs):
assert isinstance(inputs, list)
out = []
for i, x in enumerate(inputs):
assert len(x) == 2
x, cls_token = x[0], x[1]
feature_shape = x.shape
if self.readout_type == "project":
x = x.flatten(2).permute((0, 2, 1))
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
x = x.permute(0, 2, 1).reshape(feature_shape)
elif self.readout_type == "add":
x = x.flatten(2) + cls_token.unsqueeze(-1)
x = x.reshape(feature_shape)
else:
pass
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
return out
class PreActResidualConvUnit(nn.Module):
"""ResidualConvUnit, pre-activate residual unit.
Args:
in_channels (int): number of channels in the input feature map.
act_layer (nn.Module): activation layer.
norm_layer (nn.Module): norm layer.
stride (int): stride of the first block. Default: 1
dilation (int): dilation rate for convs layers. Default: 1.
"""
def __init__(self, in_channels, act_layer, norm_layer, stride=1, dilation=1):
super(PreActResidualConvUnit, self).__init__()
self.conv1 = ConvModule(
in_channels,
in_channels,
3,
stride=stride,
padding=dilation,
dilation=dilation,
norm_layer=norm_layer,
act_layer=act_layer,
bias=False,
order=("act", "conv", "norm"),
)
self.conv2 = ConvModule(
in_channels,
in_channels,
3,
padding=1,
norm_layer=norm_layer,
act_layer=act_layer,
bias=False,
order=("act", "conv", "norm"),
)
def forward(self, inputs):
inputs_ = inputs.clone()
x = self.conv1(inputs)
x = self.conv2(x)
return x + inputs_
class FeatureFusionBlock(nn.Module):
"""FeatureFusionBlock, merge feature map from different stages.
Args:
in_channels (int): Input channels.
act_layer (nn.Module): activation layer for ResidualConvUnit.
norm_layer (nn.Module): normalization layer.
expand (bool): Whether expand the channels in post process block.
Default: False.
align_corners (bool): align_corner setting for bilinear upsample.
Default: True.
"""
def __init__(self, in_channels, act_layer, norm_layer, expand=False, align_corners=True):
super(FeatureFusionBlock, self).__init__()
self.in_channels = in_channels
self.expand = expand
self.align_corners = align_corners
self.out_channels = in_channels
if self.expand:
self.out_channels = in_channels // 2
self.project = ConvModule(self.in_channels, self.out_channels, kernel_size=1, act_layer=None, bias=True)
self.res_conv_unit1 = PreActResidualConvUnit(
in_channels=self.in_channels, act_layer=act_layer, norm_layer=norm_layer
)
self.res_conv_unit2 = PreActResidualConvUnit(
in_channels=self.in_channels, act_layer=act_layer, norm_layer=norm_layer
)
def forward(self, *inputs):
x = inputs[0]
if len(inputs) == 2:
if x.shape != inputs[1].shape:
res = resize(inputs[1], size=(x.shape[2], x.shape[3]), mode="bilinear", align_corners=False)
else:
res = inputs[1]
x = x + self.res_conv_unit1(res)
x = self.res_conv_unit2(x)
x = resize(x, scale_factor=2, mode="bilinear", align_corners=self.align_corners)
x = self.project(x)
return x
class DPTHead(DepthBaseDecodeHead):
"""Vision Transformers for Dense Prediction.
This head is implemented of `DPT <https://arxiv.org/abs/2103.13413>`_.
Args:
embed_dims (int): The embed dimension of the ViT backbone.
Default: 768.
post_process_channels (List): Out channels of post process conv
layers. Default: [96, 192, 384, 768].
readout_type (str): Type of readout operation. Default: 'ignore'.
patch_size (int): The patch size. Default: 16.
expand_channels (bool): Whether expand the channels in post process
block. Default: False.
"""
def __init__(
self,
embed_dims=768,
post_process_channels=[96, 192, 384, 768],
readout_type="ignore",
patch_size=16,
expand_channels=False,
**kwargs,
):
super(DPTHead, self).__init__(**kwargs)
self.in_channels = self.in_channels
self.expand_channels = expand_channels
self.reassemble_blocks = ReassembleBlocks(embed_dims, post_process_channels, readout_type, patch_size)
self.post_process_channels = [
channel * math.pow(2, i) if expand_channels else channel for i, channel in enumerate(post_process_channels)
]
self.convs = nn.ModuleList()
for channel in self.post_process_channels:
self.convs.append(ConvModule(channel, self.channels, kernel_size=3, padding=1, act_layer=None, bias=False))
self.fusion_blocks = nn.ModuleList()
for _ in range(len(self.convs)):
self.fusion_blocks.append(FeatureFusionBlock(self.channels, self.act_layer, self.norm_layer))
self.fusion_blocks[0].res_conv_unit1 = None
self.project = ConvModule(self.channels, self.channels, kernel_size=3, padding=1, norm_layer=self.norm_layer)
self.num_fusion_blocks = len(self.fusion_blocks)
self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers)
self.num_post_process_channels = len(self.post_process_channels)
assert self.num_fusion_blocks == self.num_reassemble_blocks
assert self.num_reassemble_blocks == self.num_post_process_channels
self.conv_depth = HeadDepth(self.channels)
def forward(self, inputs, img_metas):
assert len(inputs) == self.num_reassemble_blocks
x = [inp for inp in inputs]
x = self.reassemble_blocks(x)
x = [self.convs[i](feature) for i, feature in enumerate(x)]
out = self.fusion_blocks[0](x[-1])
for i in range(1, len(self.fusion_blocks)):
out = self.fusion_blocks[i](out, x[-(i + 1)])
out = self.project(out)
out = self.depth_pred(out)
return out
|