Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# | |
# This source code is licensed under the Apache License, Version 2.0 | |
# found in the LICENSE file in the root directory of this source tree. | |
import os | |
import random | |
import re | |
import socket | |
from typing import Dict, List | |
import torch | |
import torch.distributed as dist | |
_LOCAL_RANK = -1 | |
_LOCAL_WORLD_SIZE = -1 | |
def is_enabled() -> bool: | |
""" | |
Returns: | |
True if distributed training is enabled | |
""" | |
return dist.is_available() and dist.is_initialized() | |
def get_global_size() -> int: | |
""" | |
Returns: | |
The number of processes in the process group | |
""" | |
return dist.get_world_size() if is_enabled() else 1 | |
def get_global_rank() -> int: | |
""" | |
Returns: | |
The rank of the current process within the global process group. | |
""" | |
return dist.get_rank() if is_enabled() else 0 | |
def get_local_rank() -> int: | |
""" | |
Returns: | |
The rank of the current process within the local (per-machine) process group. | |
""" | |
if not is_enabled(): | |
return 0 | |
assert 0 <= _LOCAL_RANK < _LOCAL_WORLD_SIZE | |
return _LOCAL_RANK | |
def get_local_size() -> int: | |
""" | |
Returns: | |
The size of the per-machine process group, | |
i.e. the number of processes per machine. | |
""" | |
if not is_enabled(): | |
return 1 | |
assert 0 <= _LOCAL_RANK < _LOCAL_WORLD_SIZE | |
return _LOCAL_WORLD_SIZE | |
def is_main_process() -> bool: | |
""" | |
Returns: | |
True if the current process is the main one. | |
""" | |
return get_global_rank() == 0 | |
def _restrict_print_to_main_process() -> None: | |
""" | |
This function disables printing when not in the main process | |
""" | |
import builtins as __builtin__ | |
builtin_print = __builtin__.print | |
def print(*args, **kwargs): | |
force = kwargs.pop("force", False) | |
if is_main_process() or force: | |
builtin_print(*args, **kwargs) | |
__builtin__.print = print | |
def _get_master_port(seed: int = 0) -> int: | |
MIN_MASTER_PORT, MAX_MASTER_PORT = (20_000, 60_000) | |
master_port_str = os.environ.get("MASTER_PORT") | |
if master_port_str is None: | |
rng = random.Random(seed) | |
return rng.randint(MIN_MASTER_PORT, MAX_MASTER_PORT) | |
return int(master_port_str) | |
def _get_available_port() -> int: | |
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: | |
# A "" host address means INADDR_ANY i.e. binding to all interfaces. | |
# Note this is not compatible with IPv6. | |
s.bind(("", 0)) | |
port = s.getsockname()[1] | |
return port | |
_TORCH_DISTRIBUTED_ENV_VARS = ( | |
"MASTER_ADDR", | |
"MASTER_PORT", | |
"RANK", | |
"WORLD_SIZE", | |
"LOCAL_RANK", | |
"LOCAL_WORLD_SIZE", | |
) | |
def _collect_env_vars() -> Dict[str, str]: | |
return {env_var: os.environ[env_var] for env_var in _TORCH_DISTRIBUTED_ENV_VARS if env_var in os.environ} | |
def _is_slurm_job_process() -> bool: | |
return "SLURM_JOB_ID" in os.environ | |
def _parse_slurm_node_list(s: str) -> List[str]: | |
nodes = [] | |
# Extract "hostname", "hostname[1-2,3,4-5]," substrings | |
p = re.compile(r"(([^\[]+)(?:\[([^\]]+)\])?),?") | |
for m in p.finditer(s): | |
prefix, suffixes = s[m.start(2) : m.end(2)], s[m.start(3) : m.end(3)] | |
for suffix in suffixes.split(","): | |
span = suffix.split("-") | |
if len(span) == 1: | |
nodes.append(prefix + suffix) | |
else: | |
width = len(span[0]) | |
start, end = int(span[0]), int(span[1]) + 1 | |
nodes.extend([prefix + f"{i:0{width}}" for i in range(start, end)]) | |
return nodes | |
def _check_env_variable(key: str, new_value: str): | |
# Only check for difference with preset environment variables | |
if key in os.environ and os.environ[key] != new_value: | |
raise RuntimeError(f"Cannot export environment variables as {key} is already set") | |
class _TorchDistributedEnvironment: | |
def __init__(self): | |
self.master_addr = "127.0.0.1" | |
self.master_port = 0 | |
self.rank = -1 | |
self.world_size = -1 | |
self.local_rank = -1 | |
self.local_world_size = -1 | |
if _is_slurm_job_process(): | |
return self._set_from_slurm_env() | |
env_vars = _collect_env_vars() | |
if not env_vars: | |
# Environment is not set | |
pass | |
elif len(env_vars) == len(_TORCH_DISTRIBUTED_ENV_VARS): | |
# Environment is fully set | |
return self._set_from_preset_env() | |
else: | |
# Environment is partially set | |
collected_env_vars = ", ".join(env_vars.keys()) | |
raise RuntimeError(f"Partially set environment: {collected_env_vars}") | |
if torch.cuda.device_count() > 0: | |
return self._set_from_local() | |
raise RuntimeError("Can't initialize PyTorch distributed environment") | |
# Slurm job created with sbatch, submitit, etc... | |
def _set_from_slurm_env(self): | |
# logger.info("Initialization from Slurm environment") | |
job_id = int(os.environ["SLURM_JOB_ID"]) | |
node_count = int(os.environ["SLURM_JOB_NUM_NODES"]) | |
nodes = _parse_slurm_node_list(os.environ["SLURM_JOB_NODELIST"]) | |
assert len(nodes) == node_count | |
self.master_addr = nodes[0] | |
self.master_port = _get_master_port(seed=job_id) | |
self.rank = int(os.environ["SLURM_PROCID"]) | |
self.world_size = int(os.environ["SLURM_NTASKS"]) | |
assert self.rank < self.world_size | |
self.local_rank = int(os.environ["SLURM_LOCALID"]) | |
self.local_world_size = self.world_size // node_count | |
assert self.local_rank < self.local_world_size | |
# Single node job with preset environment (i.e. torchrun) | |
def _set_from_preset_env(self): | |
# logger.info("Initialization from preset environment") | |
self.master_addr = os.environ["MASTER_ADDR"] | |
self.master_port = os.environ["MASTER_PORT"] | |
self.rank = int(os.environ["RANK"]) | |
self.world_size = int(os.environ["WORLD_SIZE"]) | |
assert self.rank < self.world_size | |
self.local_rank = int(os.environ["LOCAL_RANK"]) | |
self.local_world_size = int(os.environ["LOCAL_WORLD_SIZE"]) | |
assert self.local_rank < self.local_world_size | |
# Single node and GPU job (i.e. local script run) | |
def _set_from_local(self): | |
# logger.info("Initialization from local") | |
self.master_addr = "127.0.0.1" | |
self.master_port = _get_available_port() | |
self.rank = 0 | |
self.world_size = 1 | |
self.local_rank = 0 | |
self.local_world_size = 1 | |
def export(self, *, overwrite: bool) -> "_TorchDistributedEnvironment": | |
# See the "Environment variable initialization" section from | |
# https://pytorch.org/docs/stable/distributed.html for the complete list of | |
# environment variables required for the env:// initialization method. | |
env_vars = { | |
"MASTER_ADDR": self.master_addr, | |
"MASTER_PORT": str(self.master_port), | |
"RANK": str(self.rank), | |
"WORLD_SIZE": str(self.world_size), | |
"LOCAL_RANK": str(self.local_rank), | |
"LOCAL_WORLD_SIZE": str(self.local_world_size), | |
} | |
if not overwrite: | |
for k, v in env_vars.items(): | |
_check_env_variable(k, v) | |
os.environ.update(env_vars) | |
return self | |
def enable(*, set_cuda_current_device: bool = True, overwrite: bool = False, allow_nccl_timeout: bool = False): | |
"""Enable distributed mode | |
Args: | |
set_cuda_current_device: If True, call torch.cuda.set_device() to set the | |
current PyTorch CUDA device to the one matching the local rank. | |
overwrite: If True, overwrites already set variables. Else fails. | |
""" | |
global _LOCAL_RANK, _LOCAL_WORLD_SIZE | |
if _LOCAL_RANK >= 0 or _LOCAL_WORLD_SIZE >= 0: | |
raise RuntimeError("Distributed mode has already been enabled") | |
torch_env = _TorchDistributedEnvironment() | |
torch_env.export(overwrite=overwrite) | |
if set_cuda_current_device: | |
torch.cuda.set_device(torch_env.local_rank) | |
if allow_nccl_timeout: | |
# This allows to use torch distributed timeout in a NCCL backend | |
key, value = "NCCL_ASYNC_ERROR_HANDLING", "1" | |
if not overwrite: | |
_check_env_variable(key, value) | |
os.environ[key] = value | |
dist.init_process_group(backend="nccl") | |
dist.barrier() | |
# Finalize setup | |
_LOCAL_RANK = torch_env.local_rank | |
_LOCAL_WORLD_SIZE = torch_env.local_world_size | |
_restrict_print_to_main_process() | |