Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# | |
# This source code is licensed under the Apache License, Version 2.0 | |
# found in the LICENSE file in the root directory of this source tree. | |
from collections import OrderedDict | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .ops import resize | |
def add_prefix(inputs, prefix): | |
"""Add prefix for dict. | |
Args: | |
inputs (dict): The input dict with str keys. | |
prefix (str): The prefix to add. | |
Returns: | |
dict: The dict with keys updated with ``prefix``. | |
""" | |
outputs = dict() | |
for name, value in inputs.items(): | |
outputs[f"{prefix}.{name}"] = value | |
return outputs | |
class DepthEncoderDecoder(nn.Module): | |
"""Encoder Decoder depther. | |
EncoderDecoder typically consists of backbone and decode_head. | |
""" | |
def __init__(self, backbone, decode_head): | |
super(DepthEncoderDecoder, self).__init__() | |
self.backbone = backbone | |
self.decode_head = decode_head | |
self.align_corners = self.decode_head.align_corners | |
def extract_feat(self, img): | |
"""Extract features from images.""" | |
return self.backbone(img) | |
def encode_decode(self, img, img_metas, rescale=True, size=None): | |
"""Encode images with backbone and decode into a depth estimation | |
map of the same size as input.""" | |
x = self.extract_feat(img) | |
out = self._decode_head_forward_test(x, img_metas) | |
# crop the pred depth to the certain range. | |
out = torch.clamp(out, min=self.decode_head.min_depth, max=self.decode_head.max_depth) | |
if rescale: | |
if size is None: | |
if img_metas is not None: | |
size = img_metas[0]["ori_shape"][:2] | |
else: | |
size = img.shape[2:] | |
out = resize(input=out, size=size, mode="bilinear", align_corners=self.align_corners) | |
return out | |
def _decode_head_forward_train(self, img, x, img_metas, depth_gt, **kwargs): | |
"""Run forward function and calculate loss for decode head in | |
training.""" | |
losses = dict() | |
loss_decode = self.decode_head.forward_train(img, x, img_metas, depth_gt, **kwargs) | |
losses.update(add_prefix(loss_decode, "decode")) | |
return losses | |
def _decode_head_forward_test(self, x, img_metas): | |
"""Run forward function and calculate loss for decode head in | |
inference.""" | |
depth_pred = self.decode_head.forward_test(x, img_metas) | |
return depth_pred | |
def forward_dummy(self, img): | |
"""Dummy forward function.""" | |
depth = self.encode_decode(img, None) | |
return depth | |
def forward_train(self, img, img_metas, depth_gt, **kwargs): | |
"""Forward function for training. | |
Args: | |
img (Tensor): Input images. | |
img_metas (list[dict]): List of image info dict where each dict | |
has: 'img_shape', 'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
`depth/datasets/pipelines/formatting.py:Collect`. | |
depth_gt (Tensor): Depth gt | |
used if the architecture supports depth estimation task. | |
Returns: | |
dict[str, Tensor]: a dictionary of loss components | |
""" | |
x = self.extract_feat(img) | |
losses = dict() | |
# the last of x saves the info from neck | |
loss_decode = self._decode_head_forward_train(img, x, img_metas, depth_gt, **kwargs) | |
losses.update(loss_decode) | |
return losses | |
def whole_inference(self, img, img_meta, rescale, size=None): | |
"""Inference with full image.""" | |
return self.encode_decode(img, img_meta, rescale, size=size) | |
def slide_inference(self, img, img_meta, rescale, stride, crop_size): | |
"""Inference by sliding-window with overlap. | |
If h_crop > h_img or w_crop > w_img, the small patch will be used to | |
decode without padding. | |
""" | |
h_stride, w_stride = stride | |
h_crop, w_crop = crop_size | |
batch_size, _, h_img, w_img = img.size() | |
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 | |
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 | |
preds = img.new_zeros((batch_size, 1, h_img, w_img)) | |
count_mat = img.new_zeros((batch_size, 1, h_img, w_img)) | |
for h_idx in range(h_grids): | |
for w_idx in range(w_grids): | |
y1 = h_idx * h_stride | |
x1 = w_idx * w_stride | |
y2 = min(y1 + h_crop, h_img) | |
x2 = min(x1 + w_crop, w_img) | |
y1 = max(y2 - h_crop, 0) | |
x1 = max(x2 - w_crop, 0) | |
crop_img = img[:, :, y1:y2, x1:x2] | |
depth_pred = self.encode_decode(crop_img, img_meta, rescale) | |
preds += F.pad(depth_pred, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))) | |
count_mat[:, :, y1:y2, x1:x2] += 1 | |
assert (count_mat == 0).sum() == 0 | |
if torch.onnx.is_in_onnx_export(): | |
# cast count_mat to constant while exporting to ONNX | |
count_mat = torch.from_numpy(count_mat.cpu().detach().numpy()).to(device=img.device) | |
preds = preds / count_mat | |
return preds | |
def inference(self, img, img_meta, rescale, size=None, mode="whole"): | |
"""Inference with slide/whole style. | |
Args: | |
img (Tensor): The input image of shape (N, 3, H, W). | |
img_meta (dict): Image info dict where each dict has: 'img_shape', | |
'scale_factor', 'flip', and may also contain | |
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. | |
For details on the values of these keys see | |
`depth/datasets/pipelines/formatting.py:Collect`. | |
rescale (bool): Whether rescale back to original shape. | |
Returns: | |
Tensor: The output depth map. | |
""" | |
assert mode in ["slide", "whole"] | |
ori_shape = img_meta[0]["ori_shape"] | |
assert all(_["ori_shape"] == ori_shape for _ in img_meta) | |
if mode == "slide": | |
depth_pred = self.slide_inference(img, img_meta, rescale) | |
else: | |
depth_pred = self.whole_inference(img, img_meta, rescale, size=size) | |
output = depth_pred | |
flip = img_meta[0]["flip"] | |
if flip: | |
flip_direction = img_meta[0]["flip_direction"] | |
assert flip_direction in ["horizontal", "vertical"] | |
if flip_direction == "horizontal": | |
output = output.flip(dims=(3,)) | |
elif flip_direction == "vertical": | |
output = output.flip(dims=(2,)) | |
return output | |
def simple_test(self, img, img_meta, rescale=True): | |
"""Simple test with single image.""" | |
depth_pred = self.inference(img, img_meta, rescale) | |
if torch.onnx.is_in_onnx_export(): | |
# our inference backend only support 4D output | |
depth_pred = depth_pred.unsqueeze(0) | |
return depth_pred | |
depth_pred = depth_pred.cpu().numpy() | |
# unravel batch dim | |
depth_pred = list(depth_pred) | |
return depth_pred | |
def aug_test(self, imgs, img_metas, rescale=True): | |
"""Test with augmentations. | |
Only rescale=True is supported. | |
""" | |
# aug_test rescale all imgs back to ori_shape for now | |
assert rescale | |
# to save memory, we get augmented depth logit inplace | |
depth_pred = self.inference(imgs[0], img_metas[0], rescale) | |
for i in range(1, len(imgs)): | |
cur_depth_pred = self.inference(imgs[i], img_metas[i], rescale, size=depth_pred.shape[-2:]) | |
depth_pred += cur_depth_pred | |
depth_pred /= len(imgs) | |
depth_pred = depth_pred.cpu().numpy() | |
# unravel batch dim | |
depth_pred = list(depth_pred) | |
return depth_pred | |
def forward_test(self, imgs, img_metas, **kwargs): | |
""" | |
Args: | |
imgs (List[Tensor]): the outer list indicates test-time | |
augmentations and inner Tensor should have a shape NxCxHxW, | |
which contains all images in the batch. | |
img_metas (List[List[dict]]): the outer list indicates test-time | |
augs (multiscale, flip, etc.) and the inner list indicates | |
images in a batch. | |
""" | |
for var, name in [(imgs, "imgs"), (img_metas, "img_metas")]: | |
if not isinstance(var, list): | |
raise TypeError(f"{name} must be a list, but got " f"{type(var)}") | |
num_augs = len(imgs) | |
if num_augs != len(img_metas): | |
raise ValueError(f"num of augmentations ({len(imgs)}) != " f"num of image meta ({len(img_metas)})") | |
# all images in the same aug batch all of the same ori_shape and pad | |
# shape | |
for img_meta in img_metas: | |
ori_shapes = [_["ori_shape"] for _ in img_meta] | |
assert all(shape == ori_shapes[0] for shape in ori_shapes) | |
img_shapes = [_["img_shape"] for _ in img_meta] | |
assert all(shape == img_shapes[0] for shape in img_shapes) | |
pad_shapes = [_["pad_shape"] for _ in img_meta] | |
assert all(shape == pad_shapes[0] for shape in pad_shapes) | |
if num_augs == 1: | |
return self.simple_test(imgs[0], img_metas[0], **kwargs) | |
else: | |
return self.aug_test(imgs, img_metas, **kwargs) | |
def forward(self, img, img_metas, return_loss=True, **kwargs): | |
"""Calls either :func:`forward_train` or :func:`forward_test` depending | |
on whether ``return_loss`` is ``True``. | |
Note this setting will change the expected inputs. When | |
``return_loss=True``, img and img_meta are single-nested (i.e. Tensor | |
and List[dict]), and when ``resturn_loss=False``, img and img_meta | |
should be double nested (i.e. List[Tensor], List[List[dict]]), with | |
the outer list indicating test time augmentations. | |
""" | |
if return_loss: | |
return self.forward_train(img, img_metas, **kwargs) | |
else: | |
return self.forward_test(img, img_metas, **kwargs) | |
def train_step(self, data_batch, optimizer, **kwargs): | |
"""The iteration step during training. | |
This method defines an iteration step during training, except for the | |
back propagation and optimizer updating, which are done in an optimizer | |
hook. Note that in some complicated cases or models, the whole process | |
including back propagation and optimizer updating is also defined in | |
this method, such as GAN. | |
Args: | |
data (dict): The output of dataloader. | |
optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of | |
runner is passed to ``train_step()``. This argument is unused | |
and reserved. | |
Returns: | |
dict: It should contain at least 3 keys: ``loss``, ``log_vars``, | |
``num_samples``. | |
``loss`` is a tensor for back propagation, which can be a | |
weighted sum of multiple losses. | |
``log_vars`` contains all the variables to be sent to the | |
logger. | |
``num_samples`` indicates the batch size (when the model is | |
DDP, it means the batch size on each GPU), which is used for | |
averaging the logs. | |
""" | |
losses = self(**data_batch) | |
# split losses and images | |
real_losses = {} | |
log_imgs = {} | |
for k, v in losses.items(): | |
if "img" in k: | |
log_imgs[k] = v | |
else: | |
real_losses[k] = v | |
loss, log_vars = self._parse_losses(real_losses) | |
outputs = dict(loss=loss, log_vars=log_vars, num_samples=len(data_batch["img_metas"]), log_imgs=log_imgs) | |
return outputs | |
def val_step(self, data_batch, **kwargs): | |
"""The iteration step during validation. | |
This method shares the same signature as :func:`train_step`, but used | |
during val epochs. Note that the evaluation after training epochs is | |
not implemented with this method, but an evaluation hook. | |
""" | |
output = self(**data_batch, **kwargs) | |
return output | |
def _parse_losses(losses): | |
import torch.distributed as dist | |
"""Parse the raw outputs (losses) of the network. | |
Args: | |
losses (dict): Raw output of the network, which usually contain | |
losses and other necessary information. | |
Returns: | |
tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor | |
which may be a weighted sum of all losses, log_vars contains | |
all the variables to be sent to the logger. | |
""" | |
log_vars = OrderedDict() | |
for loss_name, loss_value in losses.items(): | |
if isinstance(loss_value, torch.Tensor): | |
log_vars[loss_name] = loss_value.mean() | |
elif isinstance(loss_value, list): | |
log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value) | |
else: | |
raise TypeError(f"{loss_name} is not a tensor or list of tensors") | |
loss = sum(_value for _key, _value in log_vars.items() if "loss" in _key) | |
log_vars["loss"] = loss | |
for loss_name, loss_value in log_vars.items(): | |
# reduce loss when distributed training | |
if dist.is_available() and dist.is_initialized(): | |
loss_value = loss_value.data.clone() | |
dist.all_reduce(loss_value.div_(dist.get_world_size())) | |
log_vars[loss_name] = loss_value.item() | |
return loss, log_vars | |