DocExplore_DEMO / src /dinov2 /eval /log_regression.py
CHSTR's picture
Upload src
265ae36 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
import argparse
import gc
import logging
import sys
import time
from typing import List, Optional
from cuml.linear_model import LogisticRegression
import torch
import torch.backends.cudnn as cudnn
import torch.distributed
from torch import nn
from torch.utils.data import TensorDataset
from torchmetrics import MetricTracker
from dinov2.data import make_dataset
from dinov2.data.transforms import make_classification_eval_transform
from dinov2.distributed import get_global_rank, get_global_size
from dinov2.eval.metrics import MetricType, build_metric
from dinov2.eval.setup import get_args_parser as get_setup_args_parser
from dinov2.eval.setup import setup_and_build_model
from dinov2.eval.utils import evaluate, extract_features
from dinov2.utils.dtype import as_torch_dtype
logger = logging.getLogger("dinov2")
DEFAULT_MAX_ITER = 1_000
C_POWER_RANGE = torch.linspace(-6, 5, 45)
_CPU_DEVICE = torch.device("cpu")
def get_args_parser(
description: Optional[str] = None,
parents: Optional[List[argparse.ArgumentParser]] = None,
add_help: bool = True,
):
parents = parents or []
setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
parents = [setup_args_parser]
parser = argparse.ArgumentParser(
description=description,
parents=parents,
add_help=add_help,
)
parser.add_argument(
"--train-dataset",
dest="train_dataset_str",
type=str,
help="Training dataset",
)
parser.add_argument(
"--val-dataset",
dest="val_dataset_str",
type=str,
help="Validation dataset",
)
parser.add_argument(
"--finetune-dataset-str",
dest="finetune_dataset_str",
type=str,
help="Fine-tuning dataset",
)
parser.add_argument(
"--finetune-on-val",
action="store_true",
help="If there is no finetune dataset, whether to choose the "
"hyperparameters on the val set instead of 10%% of the train dataset",
)
parser.add_argument(
"--metric-type",
type=MetricType,
choices=list(MetricType),
help="Metric type",
)
parser.add_argument(
"--train-features-device",
type=str,
help="Device to gather train features (cpu, cuda, cuda:0, etc.), default: %(default)s",
)
parser.add_argument(
"--train-dtype",
type=str,
help="Data type to convert the train features to (default: %(default)s)",
)
parser.add_argument(
"--max-train-iters",
type=int,
help="Maximum number of train iterations (default: %(default)s)",
)
parser.set_defaults(
train_dataset_str="ImageNet:split=TRAIN",
val_dataset_str="ImageNet:split=VAL",
finetune_dataset_str=None,
metric_type=MetricType.MEAN_ACCURACY,
train_features_device="cpu",
train_dtype="float64",
max_train_iters=DEFAULT_MAX_ITER,
finetune_on_val=False,
)
return parser
class LogRegModule(nn.Module):
def __init__(
self,
C,
max_iter=DEFAULT_MAX_ITER,
dtype=torch.float64,
device=_CPU_DEVICE,
):
super().__init__()
self.dtype = dtype
self.device = device
self.estimator = LogisticRegression(
penalty="l2",
C=C,
max_iter=max_iter,
output_type="numpy",
tol=1e-12,
linesearch_max_iter=50,
)
def forward(self, samples, targets):
samples_device = samples.device
samples = samples.to(dtype=self.dtype, device=self.device)
if self.device == _CPU_DEVICE:
samples = samples.numpy()
probas = self.estimator.predict_proba(samples)
return {"preds": torch.from_numpy(probas).to(samples_device), "target": targets}
def fit(self, train_features, train_labels):
train_features = train_features.to(dtype=self.dtype, device=self.device)
train_labels = train_labels.to(dtype=self.dtype, device=self.device)
if self.device == _CPU_DEVICE:
# both cuML and sklearn only work with numpy arrays on CPU
train_features = train_features.numpy()
train_labels = train_labels.numpy()
self.estimator.fit(train_features, train_labels)
def evaluate_model(*, logreg_model, logreg_metric, test_data_loader, device):
postprocessors = {"metrics": logreg_model}
metrics = {"metrics": logreg_metric}
return evaluate(nn.Identity(), test_data_loader, postprocessors, metrics, device)
def train_for_C(*, C, max_iter, train_features, train_labels, dtype=torch.float64, device=_CPU_DEVICE):
logreg_model = LogRegModule(C, max_iter=max_iter, dtype=dtype, device=device)
logreg_model.fit(train_features, train_labels)
return logreg_model
def train_and_evaluate(
*,
C,
max_iter,
train_features,
train_labels,
logreg_metric,
test_data_loader,
train_dtype=torch.float64,
train_features_device,
eval_device,
):
logreg_model = train_for_C(
C=C,
max_iter=max_iter,
train_features=train_features,
train_labels=train_labels,
dtype=train_dtype,
device=train_features_device,
)
return evaluate_model(
logreg_model=logreg_model,
logreg_metric=logreg_metric,
test_data_loader=test_data_loader,
device=eval_device,
)
def sweep_C_values(
*,
train_features,
train_labels,
test_data_loader,
metric_type,
num_classes,
train_dtype=torch.float64,
train_features_device=_CPU_DEVICE,
max_train_iters=DEFAULT_MAX_ITER,
):
if metric_type == MetricType.PER_CLASS_ACCURACY:
# If we want to output per-class accuracy, we select the hyperparameters with mean per class
metric_type = MetricType.MEAN_PER_CLASS_ACCURACY
logreg_metric = build_metric(metric_type, num_classes=num_classes)
metric_tracker = MetricTracker(logreg_metric, maximize=True)
ALL_C = 10**C_POWER_RANGE
logreg_models = {}
train_features = train_features.to(dtype=train_dtype, device=train_features_device)
train_labels = train_labels.to(device=train_features_device)
for i in range(get_global_rank(), len(ALL_C), get_global_size()):
C = ALL_C[i].item()
logger.info(
f"Training for C = {C:.5f}, dtype={train_dtype}, "
f"features: {train_features.shape}, {train_features.dtype}, "
f"labels: {train_labels.shape}, {train_labels.dtype}"
)
logreg_models[C] = train_for_C(
C=C,
max_iter=max_train_iters,
train_features=train_features,
train_labels=train_labels,
dtype=train_dtype,
device=train_features_device,
)
gather_list = [None for _ in range(get_global_size())]
torch.distributed.all_gather_object(gather_list, logreg_models)
logreg_models_gathered = {}
for logreg_dict in gather_list:
logreg_models_gathered.update(logreg_dict)
for i in range(len(ALL_C)):
metric_tracker.increment()
C = ALL_C[i].item()
evals = evaluate_model(
logreg_model=logreg_models_gathered[C],
logreg_metric=metric_tracker,
test_data_loader=test_data_loader,
device=torch.cuda.current_device(),
)
logger.info(f"Trained for C = {C:.5f}, accuracies = {evals}")
best_stats, which_epoch = metric_tracker.best_metric(return_step=True)
best_stats_100 = {k: 100.0 * v for k, v in best_stats.items()}
if which_epoch["top-1"] == i:
best_C = C
logger.info(f"Sweep best {best_stats_100}, best C = {best_C:.6f}")
return best_stats, best_C
def eval_log_regression(
*,
model,
train_dataset,
val_dataset,
finetune_dataset,
metric_type,
batch_size,
num_workers,
finetune_on_val=False,
train_dtype=torch.float64,
train_features_device=_CPU_DEVICE,
max_train_iters=DEFAULT_MAX_ITER,
):
"""
Implements the "standard" process for log regression evaluation:
The value of C is chosen by training on train_dataset and evaluating on
finetune_dataset. Then, the final model is trained on a concatenation of
train_dataset and finetune_dataset, and is evaluated on val_dataset.
If there is no finetune_dataset, the value of C is the one that yields
the best results on a random 10% subset of the train dataset
"""
start = time.time()
train_features, train_labels = extract_features(
model, train_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
)
val_features, val_labels = extract_features(
model, val_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
)
val_data_loader = torch.utils.data.DataLoader(
TensorDataset(val_features, val_labels),
batch_size=batch_size,
drop_last=False,
num_workers=0,
persistent_workers=False,
)
if finetune_dataset is None and finetune_on_val:
logger.info("Choosing hyperparameters on the val dataset")
finetune_features, finetune_labels = val_features, val_labels
elif finetune_dataset is None and not finetune_on_val:
logger.info("Choosing hyperparameters on 10% of the train dataset")
torch.manual_seed(0)
indices = torch.randperm(len(train_features), device=train_features.device)
finetune_index = indices[: len(train_features) // 10]
train_index = indices[len(train_features) // 10 :]
finetune_features, finetune_labels = train_features[finetune_index], train_labels[finetune_index]
train_features, train_labels = train_features[train_index], train_labels[train_index]
else:
logger.info("Choosing hyperparameters on the finetune dataset")
finetune_features, finetune_labels = extract_features(
model, finetune_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
)
# release the model - free GPU memory
del model
gc.collect()
torch.cuda.empty_cache()
finetune_data_loader = torch.utils.data.DataLoader(
TensorDataset(finetune_features, finetune_labels),
batch_size=batch_size,
drop_last=False,
)
if len(train_labels.shape) > 1:
num_classes = train_labels.shape[1]
else:
num_classes = train_labels.max() + 1
logger.info("Using cuML for logistic regression")
best_stats, best_C = sweep_C_values(
train_features=train_features,
train_labels=train_labels,
test_data_loader=finetune_data_loader,
metric_type=metric_type,
num_classes=num_classes,
train_dtype=train_dtype,
train_features_device=train_features_device,
max_train_iters=max_train_iters,
)
if not finetune_on_val:
logger.info("Best parameter found, concatenating features")
train_features = torch.cat((train_features, finetune_features))
train_labels = torch.cat((train_labels, finetune_labels))
logger.info("Training final model")
logreg_metric = build_metric(metric_type, num_classes=num_classes)
evals = train_and_evaluate(
C=best_C,
max_iter=max_train_iters,
train_features=train_features,
train_labels=train_labels,
logreg_metric=logreg_metric.clone(),
test_data_loader=val_data_loader,
eval_device=torch.cuda.current_device(),
train_dtype=train_dtype,
train_features_device=train_features_device,
)
best_stats = evals[1]["metrics"]
best_stats["best_C"] = best_C
logger.info(f"Log regression evaluation done in {int(time.time() - start)}s")
return best_stats
def eval_log_regression_with_model(
model,
train_dataset_str="ImageNet:split=TRAIN",
val_dataset_str="ImageNet:split=VAL",
finetune_dataset_str=None,
autocast_dtype=torch.float,
finetune_on_val=False,
metric_type=MetricType.MEAN_ACCURACY,
train_dtype=torch.float64,
train_features_device=_CPU_DEVICE,
max_train_iters=DEFAULT_MAX_ITER,
):
cudnn.benchmark = True
transform = make_classification_eval_transform(resize_size=224)
target_transform = None
train_dataset = make_dataset(dataset_str=train_dataset_str, transform=transform, target_transform=target_transform)
val_dataset = make_dataset(dataset_str=val_dataset_str, transform=transform, target_transform=target_transform)
if finetune_dataset_str is not None:
finetune_dataset = make_dataset(
dataset_str=finetune_dataset_str, transform=transform, target_transform=target_transform
)
else:
finetune_dataset = None
with torch.cuda.amp.autocast(dtype=autocast_dtype):
results_dict_logreg = eval_log_regression(
model=model,
train_dataset=train_dataset,
val_dataset=val_dataset,
finetune_dataset=finetune_dataset,
metric_type=metric_type,
batch_size=256,
num_workers=0, # 5,
finetune_on_val=finetune_on_val,
train_dtype=train_dtype,
train_features_device=train_features_device,
max_train_iters=max_train_iters,
)
results_dict = {
"top-1": results_dict_logreg["top-1"].cpu().numpy() * 100.0,
"top-5": results_dict_logreg.get("top-5", torch.tensor(0.0)).cpu().numpy() * 100.0,
"best_C": results_dict_logreg["best_C"],
}
logger.info(
"\n".join(
[
"Training of the supervised logistic regression on frozen features completed.\n"
"Top-1 test accuracy: {acc:.1f}".format(acc=results_dict["top-1"]),
"Top-5 test accuracy: {acc:.1f}".format(acc=results_dict["top-5"]),
"obtained for C = {c:.6f}".format(c=results_dict["best_C"]),
]
)
)
torch.distributed.barrier()
return results_dict
def main(args):
model, autocast_dtype = setup_and_build_model(args)
eval_log_regression_with_model(
model=model,
train_dataset_str=args.train_dataset_str,
val_dataset_str=args.val_dataset_str,
finetune_dataset_str=args.finetune_dataset_str,
autocast_dtype=autocast_dtype,
finetune_on_val=args.finetune_on_val,
metric_type=args.metric_type,
train_dtype=as_torch_dtype(args.train_dtype),
train_features_device=torch.device(args.train_features_device),
max_train_iters=args.max_train_iters,
)
return 0
if __name__ == "__main__":
description = "DINOv2 logistic regression evaluation"
args_parser = get_args_parser(description=description)
args = args_parser.parse_args()
sys.exit(main(args))