# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import copy from functools import partial import math import warnings import torch import torch.nn as nn from .ops import resize # XXX: (Untested) replacement for mmcv.imdenormalize() def _imdenormalize(img, mean, std, to_bgr=True): import numpy as np mean = mean.reshape(1, -1).astype(np.float64) std = std.reshape(1, -1).astype(np.float64) img = (img * std) + mean if to_bgr: img = img[::-1] return img class DepthBaseDecodeHead(nn.Module): """Base class for BaseDecodeHead. Args: in_channels (List): Input channels. channels (int): Channels after modules, before conv_depth. conv_layer (nn.Module): Conv layers. Default: None. act_layer (nn.Module): Activation layers. Default: nn.ReLU. loss_decode (dict): Config of decode loss. Default: (). sampler (dict|None): The config of depth map sampler. Default: None. align_corners (bool): align_corners argument of F.interpolate. Default: False. min_depth (int): Min depth in dataset setting. Default: 1e-3. max_depth (int): Max depth in dataset setting. Default: None. norm_layer (dict|None): Norm layers. Default: None. classify (bool): Whether predict depth in a cls.-reg. manner. Default: False. n_bins (int): The number of bins used in cls. step. Default: 256. bins_strategy (str): The discrete strategy used in cls. step. Default: 'UD'. norm_strategy (str): The norm strategy on cls. probability distribution. Default: 'linear' scale_up (str): Whether predict depth in a scale-up manner. Default: False. """ def __init__( self, in_channels, conv_layer=None, act_layer=nn.ReLU, channels=96, loss_decode=(), sampler=None, align_corners=False, min_depth=1e-3, max_depth=None, norm_layer=None, classify=False, n_bins=256, bins_strategy="UD", norm_strategy="linear", scale_up=False, ): super(DepthBaseDecodeHead, self).__init__() self.in_channels = in_channels self.channels = channels self.conf_layer = conv_layer self.act_layer = act_layer self.loss_decode = loss_decode self.align_corners = align_corners self.min_depth = min_depth self.max_depth = max_depth self.norm_layer = norm_layer self.classify = classify self.n_bins = n_bins self.scale_up = scale_up if self.classify: assert bins_strategy in ["UD", "SID"], "Support bins_strategy: UD, SID" assert norm_strategy in ["linear", "softmax", "sigmoid"], "Support norm_strategy: linear, softmax, sigmoid" self.bins_strategy = bins_strategy self.norm_strategy = norm_strategy self.softmax = nn.Softmax(dim=1) self.conv_depth = nn.Conv2d(channels, n_bins, kernel_size=3, padding=1, stride=1) else: self.conv_depth = nn.Conv2d(channels, 1, kernel_size=3, padding=1, stride=1) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() def forward(self, inputs, img_metas): """Placeholder of forward function.""" pass def forward_train(self, img, inputs, img_metas, depth_gt): """Forward function for training. Args: inputs (list[Tensor]): List of multi-level img features. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `depth/datasets/pipelines/formatting.py:Collect`. depth_gt (Tensor): GT depth Returns: dict[str, Tensor]: a dictionary of loss components """ depth_pred = self.forward(inputs, img_metas) losses = self.losses(depth_pred, depth_gt) log_imgs = self.log_images(img[0], depth_pred[0], depth_gt[0], img_metas[0]) losses.update(**log_imgs) return losses def forward_test(self, inputs, img_metas): """Forward function for testing. Args: inputs (list[Tensor]): List of multi-level img features. img_metas (list[dict]): List of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `depth/datasets/pipelines/formatting.py:Collect`. Returns: Tensor: Output depth map. """ return self.forward(inputs, img_metas) def depth_pred(self, feat): """Prediction each pixel.""" if self.classify: logit = self.conv_depth(feat) if self.bins_strategy == "UD": bins = torch.linspace(self.min_depth, self.max_depth, self.n_bins, device=feat.device) elif self.bins_strategy == "SID": bins = torch.logspace(self.min_depth, self.max_depth, self.n_bins, device=feat.device) # following Adabins, default linear if self.norm_strategy == "linear": logit = torch.relu(logit) eps = 0.1 logit = logit + eps logit = logit / logit.sum(dim=1, keepdim=True) elif self.norm_strategy == "softmax": logit = torch.softmax(logit, dim=1) elif self.norm_strategy == "sigmoid": logit = torch.sigmoid(logit) logit = logit / logit.sum(dim=1, keepdim=True) output = torch.einsum("ikmn,k->imn", [logit, bins]).unsqueeze(dim=1) else: if self.scale_up: output = self.sigmoid(self.conv_depth(feat)) * self.max_depth else: output = self.relu(self.conv_depth(feat)) + self.min_depth return output def losses(self, depth_pred, depth_gt): """Compute depth loss.""" loss = dict() depth_pred = resize( input=depth_pred, size=depth_gt.shape[2:], mode="bilinear", align_corners=self.align_corners, warning=False ) if not isinstance(self.loss_decode, nn.ModuleList): losses_decode = [self.loss_decode] else: losses_decode = self.loss_decode for loss_decode in losses_decode: if loss_decode.loss_name not in loss: loss[loss_decode.loss_name] = loss_decode(depth_pred, depth_gt) else: loss[loss_decode.loss_name] += loss_decode(depth_pred, depth_gt) return loss def log_images(self, img_path, depth_pred, depth_gt, img_meta): import numpy as np show_img = copy.deepcopy(img_path.detach().cpu().permute(1, 2, 0)) show_img = show_img.numpy().astype(np.float32) show_img = _imdenormalize( show_img, img_meta["img_norm_cfg"]["mean"], img_meta["img_norm_cfg"]["std"], img_meta["img_norm_cfg"]["to_rgb"], ) show_img = np.clip(show_img, 0, 255) show_img = show_img.astype(np.uint8) show_img = show_img[:, :, ::-1] show_img = show_img.transpose(0, 2, 1) show_img = show_img.transpose(1, 0, 2) depth_pred = depth_pred / torch.max(depth_pred) depth_gt = depth_gt / torch.max(depth_gt) depth_pred_color = copy.deepcopy(depth_pred.detach().cpu()) depth_gt_color = copy.deepcopy(depth_gt.detach().cpu()) return {"img_rgb": show_img, "img_depth_pred": depth_pred_color, "img_depth_gt": depth_gt_color} class BNHead(DepthBaseDecodeHead): """Just a batchnorm.""" def __init__(self, input_transform="resize_concat", in_index=(0, 1, 2, 3), upsample=1, **kwargs): super().__init__(**kwargs) self.input_transform = input_transform self.in_index = in_index self.upsample = upsample # self.bn = nn.SyncBatchNorm(self.in_channels) if self.classify: self.conv_depth = nn.Conv2d(self.channels, self.n_bins, kernel_size=1, padding=0, stride=1) else: self.conv_depth = nn.Conv2d(self.channels, 1, kernel_size=1, padding=0, stride=1) def _transform_inputs(self, inputs): """Transform inputs for decoder. Args: inputs (list[Tensor]): List of multi-level img features. Returns: Tensor: The transformed inputs """ if "concat" in self.input_transform: inputs = [inputs[i] for i in self.in_index] if "resize" in self.input_transform: inputs = [ resize( input=x, size=[s * self.upsample for s in inputs[0].shape[2:]], mode="bilinear", align_corners=self.align_corners, ) for x in inputs ] inputs = torch.cat(inputs, dim=1) elif self.input_transform == "multiple_select": inputs = [inputs[i] for i in self.in_index] else: inputs = inputs[self.in_index] return inputs def _forward_feature(self, inputs, img_metas=None, **kwargs): """Forward function for feature maps before classifying each pixel with ``self.cls_seg`` fc. Args: inputs (list[Tensor]): List of multi-level img features. Returns: feats (Tensor): A tensor of shape (batch_size, self.channels, H, W) which is feature map for last layer of decoder head. """ # accept lists (for cls token) inputs = list(inputs) for i, x in enumerate(inputs): if len(x) == 2: x, cls_token = x[0], x[1] if len(x.shape) == 2: x = x[:, :, None, None] cls_token = cls_token[:, :, None, None].expand_as(x) inputs[i] = torch.cat((x, cls_token), 1) else: x = x[0] if len(x.shape) == 2: x = x[:, :, None, None] inputs[i] = x x = self._transform_inputs(inputs) # feats = self.bn(x) return x def forward(self, inputs, img_metas=None, **kwargs): """Forward function.""" output = self._forward_feature(inputs, img_metas=img_metas, **kwargs) output = self.depth_pred(output) return output class ConvModule(nn.Module): """A conv block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). It is based upon three build methods: `build_conv_layer()`, `build_norm_layer()` and `build_activation_layer()`. Besides, we add some additional features in this module. 1. Automatically set `bias` of the conv layer. 2. Spectral norm is supported. 3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only supports zero and circular padding, and we add "reflect" padding mode. Args: in_channels (int): Number of channels in the input feature map. Same as that in ``nn._ConvNd``. out_channels (int): Number of channels produced by the convolution. Same as that in ``nn._ConvNd``. kernel_size (int | tuple[int]): Size of the convolving kernel. Same as that in ``nn._ConvNd``. stride (int | tuple[int]): Stride of the convolution. Same as that in ``nn._ConvNd``. padding (int | tuple[int]): Zero-padding added to both sides of the input. Same as that in ``nn._ConvNd``. dilation (int | tuple[int]): Spacing between kernel elements. Same as that in ``nn._ConvNd``. groups (int): Number of blocked connections from input channels to output channels. Same as that in ``nn._ConvNd``. bias (bool | str): If specified as `auto`, it will be decided by the norm_layer. Bias will be set as True if `norm_layer` is None, otherwise False. Default: "auto". conv_layer (nn.Module): Convolution layer. Default: None, which means using conv2d. norm_layer (nn.Module): Normalization layer. Default: None. act_layer (nn.Module): Activation layer. Default: nn.ReLU. inplace (bool): Whether to use inplace mode for activation. Default: True. with_spectral_norm (bool): Whether use spectral norm in conv module. Default: False. padding_mode (str): If the `padding_mode` has not been supported by current `Conv2d` in PyTorch, we will use our own padding layer instead. Currently, we support ['zeros', 'circular'] with official implementation and ['reflect'] with our own implementation. Default: 'zeros'. order (tuple[str]): The order of conv/norm/activation layers. It is a sequence of "conv", "norm" and "act". Common examples are ("conv", "norm", "act") and ("act", "conv", "norm"). Default: ('conv', 'norm', 'act'). """ _abbr_ = "conv_block" def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias="auto", conv_layer=nn.Conv2d, norm_layer=None, act_layer=nn.ReLU, inplace=True, with_spectral_norm=False, padding_mode="zeros", order=("conv", "norm", "act"), ): super(ConvModule, self).__init__() official_padding_mode = ["zeros", "circular"] self.conv_layer = conv_layer self.norm_layer = norm_layer self.act_layer = act_layer self.inplace = inplace self.with_spectral_norm = with_spectral_norm self.with_explicit_padding = padding_mode not in official_padding_mode self.order = order assert isinstance(self.order, tuple) and len(self.order) == 3 assert set(order) == set(["conv", "norm", "act"]) self.with_norm = norm_layer is not None self.with_activation = act_layer is not None # if the conv layer is before a norm layer, bias is unnecessary. if bias == "auto": bias = not self.with_norm self.with_bias = bias if self.with_explicit_padding: if padding_mode == "zeros": padding_layer = nn.ZeroPad2d else: raise AssertionError(f"Unsupported padding mode: {padding_mode}") self.pad = padding_layer(padding) # reset padding to 0 for conv module conv_padding = 0 if self.with_explicit_padding else padding # build convolution layer self.conv = self.conv_layer( in_channels, out_channels, kernel_size, stride=stride, padding=conv_padding, dilation=dilation, groups=groups, bias=bias, ) # export the attributes of self.conv to a higher level for convenience self.in_channels = self.conv.in_channels self.out_channels = self.conv.out_channels self.kernel_size = self.conv.kernel_size self.stride = self.conv.stride self.padding = padding self.dilation = self.conv.dilation self.transposed = self.conv.transposed self.output_padding = self.conv.output_padding self.groups = self.conv.groups if self.with_spectral_norm: self.conv = nn.utils.spectral_norm(self.conv) # build normalization layers if self.with_norm: # norm layer is after conv layer if order.index("norm") > order.index("conv"): norm_channels = out_channels else: norm_channels = in_channels norm = partial(norm_layer, num_features=norm_channels) self.add_module("norm", norm) if self.with_bias: from torch.nnModules.batchnorm import _BatchNorm from torch.nnModules.instancenorm import _InstanceNorm if isinstance(norm, (_BatchNorm, _InstanceNorm)): warnings.warn("Unnecessary conv bias before batch/instance norm") else: self.norm_name = None # build activation layer if self.with_activation: # nn.Tanh has no 'inplace' argument # (nn.Tanh, nn.PReLU, nn.Sigmoid, nn.HSigmoid, nn.Swish, nn.GELU) if not isinstance(act_layer, (nn.Tanh, nn.PReLU, nn.Sigmoid, nn.GELU)): act_layer = partial(act_layer, inplace=inplace) self.activate = act_layer() # Use msra init by default self.init_weights() @property def norm(self): if self.norm_name: return getattr(self, self.norm_name) else: return None def init_weights(self): # 1. It is mainly for customized conv layers with their own # initialization manners by calling their own ``init_weights()``, # and we do not want ConvModule to override the initialization. # 2. For customized conv layers without their own initialization # manners (that is, they don't have their own ``init_weights()``) # and PyTorch's conv layers, they will be initialized by # this method with default ``kaiming_init``. # Note: For PyTorch's conv layers, they will be overwritten by our # initialization implementation using default ``kaiming_init``. if not hasattr(self.conv, "init_weights"): if self.with_activation and isinstance(self.act_layer, nn.LeakyReLU): nonlinearity = "leaky_relu" a = 0.01 # XXX: default negative_slope else: nonlinearity = "relu" a = 0 if hasattr(self.conv, "weight") and self.conv.weight is not None: nn.init.kaiming_normal_(self.conv.weight, a=a, mode="fan_out", nonlinearity=nonlinearity) if hasattr(self.conv, "bias") and self.conv.bias is not None: nn.init.constant_(self.conv.bias, 0) if self.with_norm: if hasattr(self.norm, "weight") and self.norm.weight is not None: nn.init.constant_(self.norm.weight, 1) if hasattr(self.norm, "bias") and self.norm.bias is not None: nn.init.constant_(self.norm.bias, 0) def forward(self, x, activate=True, norm=True): for layer in self.order: if layer == "conv": if self.with_explicit_padding: x = self.pad(x) x = self.conv(x) elif layer == "norm" and norm and self.with_norm: x = self.norm(x) elif layer == "act" and activate and self.with_activation: x = self.activate(x) return x class Interpolate(nn.Module): def __init__(self, scale_factor, mode, align_corners=False): super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners def forward(self, x): x = self.interp(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) return x class HeadDepth(nn.Module): def __init__(self, features): super(HeadDepth, self).__init__() self.head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), Interpolate(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), ) def forward(self, x): x = self.head(x) return x class ReassembleBlocks(nn.Module): """ViTPostProcessBlock, process cls_token in ViT backbone output and rearrange the feature vector to feature map. Args: in_channels (int): ViT feature channels. Default: 768. out_channels (List): output channels of each stage. Default: [96, 192, 384, 768]. readout_type (str): Type of readout operation. Default: 'ignore'. patch_size (int): The patch size. Default: 16. """ def __init__(self, in_channels=768, out_channels=[96, 192, 384, 768], readout_type="ignore", patch_size=16): super(ReassembleBlocks, self).__init__() assert readout_type in ["ignore", "add", "project"] self.readout_type = readout_type self.patch_size = patch_size self.projects = nn.ModuleList( [ ConvModule( in_channels=in_channels, out_channels=out_channel, kernel_size=1, act_layer=None, ) for out_channel in out_channels ] ) self.resize_layers = nn.ModuleList( [ nn.ConvTranspose2d( in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0 ), nn.ConvTranspose2d( in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0 ), nn.Identity(), nn.Conv2d( in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1 ), ] ) if self.readout_type == "project": self.readout_projects = nn.ModuleList() for _ in range(len(self.projects)): self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU())) def forward(self, inputs): assert isinstance(inputs, list) out = [] for i, x in enumerate(inputs): assert len(x) == 2 x, cls_token = x[0], x[1] feature_shape = x.shape if self.readout_type == "project": x = x.flatten(2).permute((0, 2, 1)) readout = cls_token.unsqueeze(1).expand_as(x) x = self.readout_projects[i](torch.cat((x, readout), -1)) x = x.permute(0, 2, 1).reshape(feature_shape) elif self.readout_type == "add": x = x.flatten(2) + cls_token.unsqueeze(-1) x = x.reshape(feature_shape) else: pass x = self.projects[i](x) x = self.resize_layers[i](x) out.append(x) return out class PreActResidualConvUnit(nn.Module): """ResidualConvUnit, pre-activate residual unit. Args: in_channels (int): number of channels in the input feature map. act_layer (nn.Module): activation layer. norm_layer (nn.Module): norm layer. stride (int): stride of the first block. Default: 1 dilation (int): dilation rate for convs layers. Default: 1. """ def __init__(self, in_channels, act_layer, norm_layer, stride=1, dilation=1): super(PreActResidualConvUnit, self).__init__() self.conv1 = ConvModule( in_channels, in_channels, 3, stride=stride, padding=dilation, dilation=dilation, norm_layer=norm_layer, act_layer=act_layer, bias=False, order=("act", "conv", "norm"), ) self.conv2 = ConvModule( in_channels, in_channels, 3, padding=1, norm_layer=norm_layer, act_layer=act_layer, bias=False, order=("act", "conv", "norm"), ) def forward(self, inputs): inputs_ = inputs.clone() x = self.conv1(inputs) x = self.conv2(x) return x + inputs_ class FeatureFusionBlock(nn.Module): """FeatureFusionBlock, merge feature map from different stages. Args: in_channels (int): Input channels. act_layer (nn.Module): activation layer for ResidualConvUnit. norm_layer (nn.Module): normalization layer. expand (bool): Whether expand the channels in post process block. Default: False. align_corners (bool): align_corner setting for bilinear upsample. Default: True. """ def __init__(self, in_channels, act_layer, norm_layer, expand=False, align_corners=True): super(FeatureFusionBlock, self).__init__() self.in_channels = in_channels self.expand = expand self.align_corners = align_corners self.out_channels = in_channels if self.expand: self.out_channels = in_channels // 2 self.project = ConvModule(self.in_channels, self.out_channels, kernel_size=1, act_layer=None, bias=True) self.res_conv_unit1 = PreActResidualConvUnit( in_channels=self.in_channels, act_layer=act_layer, norm_layer=norm_layer ) self.res_conv_unit2 = PreActResidualConvUnit( in_channels=self.in_channels, act_layer=act_layer, norm_layer=norm_layer ) def forward(self, *inputs): x = inputs[0] if len(inputs) == 2: if x.shape != inputs[1].shape: res = resize(inputs[1], size=(x.shape[2], x.shape[3]), mode="bilinear", align_corners=False) else: res = inputs[1] x = x + self.res_conv_unit1(res) x = self.res_conv_unit2(x) x = resize(x, scale_factor=2, mode="bilinear", align_corners=self.align_corners) x = self.project(x) return x class DPTHead(DepthBaseDecodeHead): """Vision Transformers for Dense Prediction. This head is implemented of `DPT `_. Args: embed_dims (int): The embed dimension of the ViT backbone. Default: 768. post_process_channels (List): Out channels of post process conv layers. Default: [96, 192, 384, 768]. readout_type (str): Type of readout operation. Default: 'ignore'. patch_size (int): The patch size. Default: 16. expand_channels (bool): Whether expand the channels in post process block. Default: False. """ def __init__( self, embed_dims=768, post_process_channels=[96, 192, 384, 768], readout_type="ignore", patch_size=16, expand_channels=False, **kwargs, ): super(DPTHead, self).__init__(**kwargs) self.in_channels = self.in_channels self.expand_channels = expand_channels self.reassemble_blocks = ReassembleBlocks(embed_dims, post_process_channels, readout_type, patch_size) self.post_process_channels = [ channel * math.pow(2, i) if expand_channels else channel for i, channel in enumerate(post_process_channels) ] self.convs = nn.ModuleList() for channel in self.post_process_channels: self.convs.append(ConvModule(channel, self.channels, kernel_size=3, padding=1, act_layer=None, bias=False)) self.fusion_blocks = nn.ModuleList() for _ in range(len(self.convs)): self.fusion_blocks.append(FeatureFusionBlock(self.channels, self.act_layer, self.norm_layer)) self.fusion_blocks[0].res_conv_unit1 = None self.project = ConvModule(self.channels, self.channels, kernel_size=3, padding=1, norm_layer=self.norm_layer) self.num_fusion_blocks = len(self.fusion_blocks) self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers) self.num_post_process_channels = len(self.post_process_channels) assert self.num_fusion_blocks == self.num_reassemble_blocks assert self.num_reassemble_blocks == self.num_post_process_channels self.conv_depth = HeadDepth(self.channels) def forward(self, inputs, img_metas): assert len(inputs) == self.num_reassemble_blocks x = [inp for inp in inputs] x = self.reassemble_blocks(x) x = [self.convs[i](feature) for i, feature in enumerate(x)] out = self.fusion_blocks[0](x[-1]) for i in range(1, len(self.fusion_blocks)): out = self.fusion_blocks[i](out, x[-(i + 1)]) out = self.project(out) out = self.depth_pred(out) return out