from html import escape from io import BytesIO import base64 from multiprocessing.dummy import Pool from PIL import Image, ImageDraw import streamlit as st import pandas as pd import numpy as np import torch # from transformers import CLIPProcessor, CLIPModel # from transformers import OwlViTProcessor, OwlViTForObjectDetection # from transformers.image_utils import ImageFeatureExtractionMixin import pickle as pkl # sketches from streamlit_drawable_canvas import st_canvas from PIL import Image, ImageOps from torchvision import transforms # model import os # No reconoce la carpeta que esta dos niveles abajo src from src.model_LN_prompt import Model from src.options import opts from datasets import load_dataset DEBUG = False if DEBUG: MODEL = "vit-base-patch32" else: MODEL = "vit-large-patch14-336" CLIP_MODEL = f"openai/clip-{MODEL}" OWL_MODEL = f"google/owlvit-base-patch32" if not DEBUG and torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") HEIGHT = 350 N_RESULTS = 5 from huggingface_hub import hf_hub_download,login token = os.getenv("HUGGINGFACE_TOKEN") # Autentica usando el token login(token=token) color = st.get_option("theme.primaryColor") if color is None: color = (0, 255, 0) else: color = tuple(int(color.lstrip("#")[i: i + 2], 16) for i in (0, 2, 4)) @st.cache_resource def load(): # Descargamos el dataset dataset = load_dataset("CHSTR/docexplore") print(dataset) print(dataset['features']) #local_dir = "./" #dataset.save_to_disk(local_dir) path_images = dataset['features']['image']['filename'] path_model = hf_hub_download(repo_id="CHSTR/DocExplore", filename="epoch=16-mAP=0.66_triplet.ckpt")#"models/epoch=16-mAP=0.66_triplet.ckpt" model = Model() model_checkpoint = torch.load(path_model, map_location=device) # 'model_60k_images_073.ckpt' -> modelo entrenado con 60k imagenes sin pidinet model.load_state_dict(model_checkpoint['state_dict']) # 'modified_model_083.ckpt' -> modelo entrenado con 60k imagenes con pidinet model.eval() # 'original_model_083.ckpt' -> modelo original entrenado con 60k imagenes con pidinet print("Modelo cargado exitosamente") embeddings_file_1 = hf_hub_download(repo_id="CHSTR/DocExplore", filename="dino_flicker_docexplore_groundingDINO.pkl") embeddings_file_0 = hf_hub_download(repo_id="CHSTR/DocExplore", filename="docexp_embeddings.pkl") embeddings = { 0: pkl.load(open(embeddings_file_0, "rb")), 1: pkl.load(open(embeddings_file_1, "rb")) } # embeddings = { # 0: pkl.load(open("docexp_embeddings.pkl", "rb")), # 1: pkl.load(open("dino_flicker_docexplore_groundingDINO.pkl", "rb")) # } # Actualizar los paths de las imágenes en los embeddings #for i in range(len(embeddings[0])): # print(embeddings[0][i]) #embeddings[0][i] = (embeddings[0][i][0], path_images + "/".join(embeddings[0][i][1].split("/")[:-3])) #for i in range(len(embeddings[1])): # print(embeddings[1][i]) #embeddings[1][i] = (embeddings[1][i][0], path_images + "/".join(embeddings[1][i][1].split("/")[:-3])) return model, path_images, embeddings print("Cargando modelos...") model, path_images, embeddings = load() source = {0: "\nDocExplore SAM", 1: "\nDocExplore GroundingDINO"} stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 5) dataset_transforms = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def compute_text_embeddings(sketch): with torch.no_grad(): sketch_feat = model(sketch.to(device), dtype='sketch') return sketch_feat # inputs = clip_processor(text=list_of_strings, return_tensors="pt", padding=True).to( # device # ) # with torch.no_grad(): # result = clip_model.get_text_features(**inputs).detach().cpu().numpy() # return result / np.linalg.norm(result, axis=1, keepdims=True) #return torch.randn(1, 768) def image_search(query, corpus, n_results=N_RESULTS): query_embedding = compute_text_embeddings(query) corpus_id = 0 if corpus == "DocExplore SAM" else 1 image_features = torch.tensor([item[0] for item in embeddings[corpus_id]]).to(device) bbox_of_images = torch.tensor([item[1] for item in embeddings[corpus_id]]).to(device) label_of_images = torch.tensor([item[2] for item in embeddings[corpus_id]]).to(device) dot_product = (image_features @ query_embedding.T)[:, 0] _, max_indices = torch.topk(dot_product, n_results, dim=0, largest=True, sorted=True) return [ ( path_images + "page" + str(i) + ".jpg", ) for i in label_of_images[max_indices].cpu().numpy().tolist() ], bbox_of_images[max_indices], dot_product[max_indices] def make_square(img, fill_color=(255, 255, 255)): x, y = img.size size = max(x, y) new_img = Image.new("RGB", (x, y), fill_color) new_img.paste(img) return new_img, x, y @st.cache_data def get_images(paths): def process_image(path): return make_square(Image.open(path)) processed = Pool(N_RESULTS).map(process_image, paths) imgs, xs, ys = [], [], [] for img, x, y in processed: imgs.append(img) xs.append(x) ys.append(y) return imgs, xs, ys def keep_best_boxes(boxes, scores, score_threshold=0.1, max_iou=0.8): candidates = [] for box, score in zip(boxes, scores): box = [round(i, 0) for i in box.tolist()] if score >= score_threshold: candidates.append((box, float(score))) to_ignore = set() for i in range(len(candidates) - 1): if i in to_ignore: continue for j in range(i + 1, len(candidates)): if j in to_ignore: continue xmin1, ymin1, xmax1, ymax1 = candidates[i][0] xmin2, ymin2, xmax2, ymax2 = candidates[j][0] if xmax1 < xmin2 or xmax2 < xmin1 or ymax1 < ymin2 or ymax2 < ymin1: continue else: xmin_inter, xmax_inter = sorted( [xmin1, xmax1, xmin2, xmax2])[1:3] ymin_inter, ymax_inter = sorted( [ymin1, ymax1, ymin2, ymax2])[1:3] area_inter = (xmax_inter - xmin_inter) * \ (ymax_inter - ymin_inter) area1 = (xmax1 - xmin1) * (ymax1 - ymin1) area2 = (xmax2 - xmin2) * (ymax2 - ymin2) iou = area_inter / (area1 + area2 - area_inter) if iou > max_iou: if candidates[i][1] > candidates[j][1]: to_ignore.add(j) else: to_ignore.add(i) break else: if area_inter / area1 > 0.9: if candidates[i][1] < 1.1 * candidates[j][1]: to_ignore.add(i) if area_inter / area2 > 0.9: if 1.1 * candidates[i][1] > candidates[j][1]: to_ignore.add(j) return [candidates[i][0] for i in range(len(candidates)) if i not in to_ignore] def convert_pil_to_base64(image): img_buffer = BytesIO() image.save(img_buffer, format="JPEG") byte_data = img_buffer.getvalue() base64_str = base64.b64encode(byte_data) return base64_str def draw_reshape_encode(img, boxes, x, y): boxes = [boxes.tolist()] image = img.copy() draw = ImageDraw.Draw(image) new_x, new_y = int(x * HEIGHT / y), HEIGHT for box in boxes: print("box:", box) draw.rectangle( [(box[0], box[1]), (box[2], box[3])], # (x_min, y_min, x_max, y_max) outline=color, # Box color width=10 # Box width ) #if x > y: # image = image.crop((0, (x - y) / 2, x, x - (x - y) / 2)) #else: # image = image.crop(((y - x) / 2, 0, y - (y - x) / 2, y)) return convert_pil_to_base64(image.resize((new_x, new_y))) def get_html(url_list, encoded_images): html = "
" for i in range(len(url_list)): title, encoded = url_list[i][0], encoded_images[i] html = ( html + f"" ) html += "
" return html description = """ # Sketch-based Detection This app retrieves images from the [DocExplore](https://www.docexplore.eu/?lang=en) dataset based on a sketch query. **Tip 1**: you can draw a sketch in the canvas. **Tip 2**: you can change the size of the stroke with the slider. The model utilized in this application is a DINOv2, which was trained in a self-supervised manner on the Flickr25k dataset. """ div_style = { "display": "flex", "justify-content": "center", "flex-wrap": "wrap", } def main(): st.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.markdown(description) st.title("One-Shot Detection") # Create two main columns left_col, right_col = st.columns([0.2, 0.8]) # Adjust the weights as needed with left_col: # Canvas for drawing canvas_result = st_canvas( background_color="#eee", stroke_width=stroke_width, update_streamlit=True, height=300, width=300, key="color_annotation_app", ) # Input controls query = [0] corpus = st.radio("", ["DocExplore SAM", "DocExplore GroundingDINO"], index=0) # score_threshold = st.slider( # "Score threshold", min_value=0.01, max_value=1.0, value=0.5, step=0.01 # ) with right_col: if canvas_result.image_data is not None: draw = Image.fromarray(canvas_result.image_data.astype("uint8")) draw = ImageOps.pad(draw.convert("RGB"), size=(224, 224)) draw.save("draw.jpg") draw_tensor = transforms.ToTensor()(draw) draw_tensor = transforms.Resize((224, 224))(draw_tensor) draw_tensor = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] )(draw_tensor) draw_tensor = draw_tensor.unsqueeze(0) else: return if len(query) > 0: retrieved, bbox_of_images, dot_product = image_search(draw_tensor, corpus) imgs, xs, ys = get_images([x[0] for x in retrieved]) encoded_images = [] for image_idx in range(len(imgs)): img0, x, y = imgs[image_idx], xs[image_idx], ys[image_idx] encoded_images.append(draw_reshape_encode(img0, bbox_of_images[image_idx], x, y)) st.markdown(get_html(retrieved, encoded_images), unsafe_allow_html=True) if __name__ == "__main__": main()