File size: 2,868 Bytes
222e60b
75f1b92
7af13f4
48193db
7af13f4
 
 
f04ccc3
9f35afb
d68a14d
 
 
 
9fed4f1
654ecef
 
 
 
 
 
 
 
db66b47
 
b2f58d6
db66b47
 
 
534efde
654ecef
db66b47
7af13f4
 
 
 
d3d7595
7af13f4
06b445f
a14bbf4
48193db
75f1b92
 
81d1362
 
03b5ddd
81d1362
d68a14d
29d2c40
406cf9a
 
 
 
29d2c40
406cf9a
 
 
 
29d2c40
406cf9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29d2c40
9fed4f1
 
 
 
 
406cf9a
29d2c40
 
406cf9a
 
 
2a80f3b
326066b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

from os import O_ACCMODE
import gradio as gr
from transformers import pipeline

app = gr.Blocks()

model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
model_id_2 = "microsoft/deberta-base"
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
model_id_4 = "lordtt13/emo-mobilebert"
model_id_5 = "juliensimon/reviews-sentiment-analysis"

def parse_output(output_json):  
    list_pred=[]
    for i in range(len(output_json[0])):
        label = output_json[0][i]['label']
        score = output_json[0][i]['score']
        list_pred.append((label, score))
    return list_pred


def get_prediction(model_id):

    classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
             
    def predict(review):
            prediction = classifier(review)
            print(prediction)
            return parse_output(prediction)
    return predict

with app:
    gr.Markdown(
    """
    # Compare Sentiment Analysis Models 
    
    Type text to predict sentiment.
    """)   
    with gr.Row():
        inp_1= gr.Textbox(label="Type text here.",placeholder="The customer service was satisfactory.")

    gr.Markdown(
    """
    **Model Predictions**
    """)
    with gr.Row():
        with gr.Column():
            gr.Markdown(
            """
            Model 1 = nlptown/bert-base-multilingual-uncased-sentiment
            """)
            btn1 = gr.Button("Predict - Model 1")
            gr.Markdown(
            """
            Model 2 = microsoft/deberta-base
            """)
            btn2 = gr.Button("Predict - Model 2")
            gr.Markdown(
            """
            Model 3 = distilbert-base-uncased-finetuned-sst-2-english"
            """)
            btn3 = gr.Button("Predict - Model 3")
            gr.Markdown(
            """
            Model 4 = lordtt13/emo-mobilebert
            """)
            btn4 = gr.Button("Predict - Model 4")
            gr.Markdown(
            """
            Model 5 = juliensimon/reviews-sentiment-analysis
            """)
            btn5 = gr.Button("Predict - Model 5")

        with gr.Column():
            out_1 = gr.Textbox(label="Predictions for Model 1")
            out_2 = gr.Textbox(label="Predictions for Model 2")  
            out_3 = gr.Textbox(label="Predictions for Model 3")        
            out_4 = gr.Textbox(label="Predictions for Model 4")     
            out_5 = gr.Textbox(label="Predictions for Model 5")     

        btn1.click(fn=get_prediction(model_id_1), inputs=inp_1, outputs=out_1)
        btn2.click(fn=get_prediction(model_id_2), inputs=inp_1, outputs=out_2)
        btn3.click(fn=get_prediction(model_id_3), inputs=inp_1, outputs=out_3)
        btn4.click(fn=get_prediction(model_id_4), inputs=inp_1, outputs=out_4)
        btn5.click(fn=get_prediction(model_id_5), inputs=inp_1, outputs=out_5)
   
app.launch()