import gradio as gr import requests.exceptions from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load app = gr.Blocks() def load_agent(model_id_1, model_id_2): """ This function load the agent's video and results :return: video_path """ # Load the metrics metadata_1 = get_metadata(model_id_1) # Get the accuracy results_1 = parse_metrics_accuracy(metadata_1) # Load the video #video_path_1 = hf_hub_download(model_id_1, filename="replay.mp4") # Load the metrics metadata_2 = get_metadata(model_id_2) # Get the accuracy results_2 = parse_metrics_accuracy(metadata_2) # Load the video #video_path_2 = hf_hub_download(model_id_2, filename="replay.mp4") return model_id_1, results_1, model_id_2, results_2 def parse_metrics_accuracy(meta): if "model-index" not in meta: return None result = meta["model-index"][0]["results"] metrics = result[0]["metrics"] accuracy = metrics[0]["value"] return accuracy def get_metadata(model_id): """ Get the metadata of the model repo :param model_id: :return: metadata """ try: readme_path = hf_hub_download(model_id, filename="README.md") metadata = metadata_load(readme_path) print(metadata) return metadata except requests.exceptions.HTTPError: return None with app: gr.Markdown( """ # Compare Sentiment Analysis Models Type two models id you want to compare or check examples below. """) with gr.Row(): model1_input = gr.Textbox(label="Model 1") model2_input = gr.Textbox(label="Model 2") with gr.Row(): app_button = gr.Button("Compare models") with gr.Row(): with gr.Column(): model1_name = gr.Markdown() #model1_video_output = gr.Video() model1_score_output = gr.Textbox(label="Mean Reward +/- Std Reward") with gr.Column(): model2_name = gr.Markdown() #model2_video_output = gr.Video() model2_score_output = gr.Textbox(label="Mean Reward +/- Std Reward") app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_score_output, model2_name, model2_score_output]) examples = gr.Examples(examples=[["scikit-learn/sentiment-analysis","microsoft/Multilingual-MiniLM-L12-H384"], ["distilbert-base-uncased-finetuned-sst-2-english", "microsoft/Multilingual-MiniLM-L12-H384"], inputs=[model1_input, model2_input]) app.launch()