import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cuda") transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) @spaces.GPU def fn(image): if image is None or len(image) == 0: return image, None # 원본 이미지도 반환 im = load_img(image, output_type="pil") im = im.convert("RGB") image_size = im.size origin = im.copy() image = load_img(im) input_images = transform_image(image).unsqueeze(0).to("cuda") # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image_size) image.putalpha(mask) return image, origin # 변환된 이미지와 원본 이미지 반환 def save_image(image): if image is not None: image.save("output.png") return "output.png" return None with gr.Blocks() as demo: image = gr.Image(label="Upload an image") text = gr.Textbox(label="Paste an image URL") download_button = gr.Button("Download Image") output_file = gr.File() slider1 = ImageSlider(label="birefnet", type="pil") slider2 = ImageSlider(label="birefnet", type="pil") chameleon = load_img("butterfly.jpg", output_type="pil") url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" with gr.Tab("Image Upload"): tab1 = gr.Interface( fn, inputs=image, outputs=[slider1, output_file], examples=[chameleon], api_name="image" ) with gr.Tab("Image URL"): tab2 = gr.Interface( fn, inputs=text, outputs=[slider2, output_file], examples=[url], api_name="text" ) def process_download(image): return save_image(image[0]) download_button.click(process_download, inputs=slider1, outputs=output_file) if __name__ == "__main__": demo.launch()