import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms # torch.set_float32_matmul_precision(['high', 'highest'][0]) birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True,torch_dtype=torch.float16) birefnet.to("cuda") transform_image = transforms.Compose([ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) @spaces.GPU def fn(image): im = load_img(image) im = im.convert('RGB') image = load_img(im) input_images = transform_image(image).unsqueeze(0).to('cuda') # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) out = (pred_pil , im) return out slider1 = ImageSlider(label="birefnet", type="pil") slider2 = ImageSlider(label="birefnet", type="pil") image = gr.Image(label="Upload an image") text = gr.Textbox(label="Paste an image URL") tab1 = gr.Interface(fn,inputs= image, outputs= slider1, api_name="image") tab2 = gr.Interface(fn,inputs= text, outputs= slider2, api_name="text") demo = gr.TabbedInterface([tab1,tab2],["image","text"],title="birefnet with image slider") if __name__ == "__main__": demo.launch()