Spaces:
Runtime error
Runtime error
File size: 10,745 Bytes
a7a1a02 7af3677 a7a1a02 7af3677 a7a1a02 7af3677 a7a1a02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import random
import os
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
from minigpt4.common.registry import registry
from minigpt4.models.blip2 import Blip2Base, disabled_train
from minigpt4.models.modeling_llama import LlamaForCausalLM
from transformers import LlamaTokenizer
@registry.register_model("mini_gpt4")
class MiniGPT4(Blip2Base):
"""
BLIP2 GPT-LLAMA model.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain_vicuna": "configs/models/minigpt4.yaml",
}
def __init__(
self,
vit_model="eva_clip_g",
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
freeze_qformer=True,
num_query_token=32,
llama_model="",
llama_cache_dir='',
prompt_path="",
prompt_template="",
max_txt_len=32,
end_sym='\n',
):
super().__init__()
self.tokenizer = self.init_tokenizer()
print('Loading VIT')
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
if freeze_vit:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
self.ln_vision.train = disabled_train
logging.info("freeze vision encoder")
print('Loading VIT Done')
print('Loading Q-Former')
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.load_from_pretrained(url_or_filename=q_former_model)
if freeze_qformer:
for name, param in self.Qformer.named_parameters():
param.requires_grad = False
self.Qformer = self.Qformer.eval()
self.Qformer.train = disabled_train
self.query_tokens.requires_grad = False
logging.info("freeze Qformer")
print('Loading Q-Former Done')
print('Loading LLAMA')
self.llama_tokenizer = LlamaTokenizer.from_pretrained('AlekseyKorshuk/vicuna-7b', use_fast=False, use_auth_token=True)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
if llama_cache_dir:
self.llama_model = LlamaForCausalLM.from_pretrained(
'AlekseyKorshuk/vicuna-7b', load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", use_auth_token=True
)
else:
self.llama_model = LlamaForCausalLM.from_pretrained(
'AlekseyKorshuk/vicuna-7b', load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", use_auth_token=True
)
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
print('Loading LLAMA Done')
self.llama_proj = nn.Linear(
self.Qformer.config.hidden_size, self.llama_model.config.hidden_size
)
self.max_txt_len = max_txt_len
self.end_sym = end_sym
if prompt_path:
with open(prompt_path, 'r') as f:
raw_prompts = f.read().splitlines()
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<ImageHere>" in raw_prompt]
self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
print('Load {} training prompts'.format(len(self.prompt_list)))
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
else:
self.prompt_list = []
def vit_to_cpu(self):
self.ln_vision.to("cpu")
self.ln_vision.float()
self.visual_encoder.to("cpu")
self.visual_encoder.float()
def encode_img(self, image):
device = image.device
self.vit_to_cpu()
image = image.to("cpu")
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
inputs_llama = self.llama_proj(query_output.last_hidden_state)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds, atts_img, prompt):
if prompt:
batch_size = img_embeds.shape[0]
p_before, p_after = prompt.split('<ImageHere>')
p_before_tokens = self.llama_tokenizer(
p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_after_tokens = self.llama_tokenizer(
p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds, p_after_embeds], dim=1)
wrapped_atts_img = atts_img[:, :1].expand(-1, wrapped_img_embeds.shape[1])
return wrapped_img_embeds, wrapped_atts_img
else:
return img_embeds, atts_img
def forward(self, samples):
image = samples["image"]
img_embeds, atts_img = self.encode_img(image)
if hasattr(samples, 'question_split'): # VQA dataset
print('VQA Batch')
vqa_prompt = '###Human: <Img><ImageHere></Img> '
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, vqa_prompt)
elif self.prompt_list:
prompt = random.choice(self.prompt_list)
img_embeds, atts_img = self.prompt_wrap(img_embeds, atts_img, prompt)
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in samples["text_input"]]
to_regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(image.device)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
)
empty_targets = (
torch.ones([atts_img.shape[0], atts_img.shape[1]+1],
dtype=torch.long).to(image.device).fill_(-100) # plus one for bos
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = img_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos)
atts_bos = atts_img[:, :1]
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
inputs_embeds = torch.cat([bos_embeds, img_embeds, to_regress_embeds], dim=1)
attention_mask = torch.cat([atts_bos, atts_img, to_regress_tokens.attention_mask], dim=1)
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model", "eva_clip_g")
q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth")
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
llama_model = cfg.get("llama_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
freeze_qformer = cfg.get("freeze_qformer", True)
llama_cache_dir = cfg.get("llama_cache_dir", "")
prompt_path = cfg.get("prompt_path", "")
prompt_template = cfg.get("prompt_template", "")
max_txt_len = cfg.get("max_txt_len", 32)
end_sym = cfg.get("end_sym", '\n')
model = cls(
vit_model=vit_model,
q_former_model=q_former_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
freeze_qformer=freeze_qformer,
llama_cache_dir=llama_cache_dir,
num_query_token=num_query_token,
llama_model=llama_model,
prompt_path=prompt_path,
prompt_template=prompt_template,
max_txt_len=max_txt_len,
end_sym=end_sym
)
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
if ckpt_path:
print("Load BLIP2-LLM Checkpoint: {}".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt['model'], strict=False)
return model
|