import os
import pathlib
import gradio as gr
import torch
from PIL import Image
repo_dir = pathlib.Path("Thin-Plate-Spline-Motion-Model").absolute()
if not repo_dir.exists():
os.system("git clone https://github.com/yoyo-nb/Thin-Plate-Spline-Motion-Model")
os.chdir(repo_dir.name)
if not (repo_dir / "checkpoints").exists():
os.system("mkdir checkpoints")
if not (repo_dir / "checkpoints/vox.pth.tar").exists():
os.system("gdown 1-CKOjv_y_TzNe-dwQsjjeVxJUuyBAb5X -O checkpoints/vox.pth.tar")
title = "# Thin-Plate Spline Motion Model for Image Animation"
DESCRIPTION = '''### Gradio demo for Thin-Plate Spline Motion Model for Image Animation, CVPR 2022. [Paper][Github Code]
'''
FOOTER = ''
def get_style_image_path(style_name: str) -> str:
base_path = 'assets'
filenames = {
'source': 'source.png',
'driving': 'driving.mp4',
}
return f'{base_path}/{filenames[style_name]}'
def get_style_image_markdown_text(style_name: str) -> str:
url = get_style_image_path(style_name)
return f''
def update_style_image(style_name: str) -> dict:
text = get_style_image_markdown_text(style_name)
return gr.Markdown.update(value=text)
def inference(img, vid):
if not os.path.exists('temp'):
os.system('mkdir temp')
img.save("temp/image.jpg", "JPEG")
if torch.cuda.is_available():
os.system(f"python demo.py --config config/vox-256.yaml --checkpoint ./checkpoints/vox.pth.tar --source_image 'temp/image.jpg' --driving_video {vid} --result_video './temp/result.mp4'")
else:
os.system(f"python demo.py --config config/vox-256.yaml --checkpoint ./checkpoints/vox.pth.tar --source_image 'temp/image.jpg' --driving_video {vid} --result_video './temp/result.mp4' --cpu")
return './temp/result.mp4'
def main():
with gr.Blocks(css='style.css') as demo:
gr.Markdown(title)
gr.Markdown(DESCRIPTION)
with gr.Box():
gr.Markdown('''## Step 1 (Provide Input Face Image)
- Drop an image containing a face to the **Input Image**.
- If there are multiple faces in the image, use Edit button in the upper right corner and crop the input image beforehand.
''')
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image',
type="pil")
with gr.Row():
paths = sorted(pathlib.Path('assets').glob('*.png'))
gr.Examples(inputs=[input_image],
examples=[[path.as_posix()] for path in paths])
with gr.Box():
gr.Markdown('''## Step 2 (Select Driving Video)
- Select **Style Driving Video for the face image animation**.
''')
with gr.Row():
with gr.Column():
with gr.Row():
driving_video = gr.Video(label='Driving Video',
format="mp4")
with gr.Row():
paths = sorted(pathlib.Path('assets').glob('*.mp4'))
gr.Examples(inputs=[driving_video],
examples=[[path.as_posix()] for path in paths])
with gr.Box():
gr.Markdown('''## Step 3 (Generate Animated Image based on the Video)
- Hit the **Generate** button. (Note: On cpu-basic, it takes ~ 10 minutes to generate final results.)
''')
with gr.Row():
with gr.Column():
with gr.Row():
generate_button = gr.Button('Generate')
with gr.Column():
result = gr.Video(label="Output")
gr.Markdown(FOOTER)
generate_button.click(fn=inference,
inputs=[
input_image,
driving_video
],
outputs=result)
demo.queue(max_size=10).launch()
if __name__ == '__main__':
main()