Spaces:
Runtime error
Runtime error
File size: 35,387 Bytes
4121bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 |
from collections import OrderedDict
from typing import Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from .backbone import Backbone
from .build import BACKBONE_REGISTRY
from detectron2.layers.blocks import FrozenBatchNorm2d
from detectron2.layers import ShapeSpec
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, norm_type='FronzenBN'):
super().__init__()
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
if norm_type == 'FronzenBN':
self.bn1 = FrozenBatchNorm2d(planes) # nn.BatchNorm2d(planes)
elif norm_type == 'SyncBN':
self.bn1 = nn.SyncBatchNorm(planes)
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
if norm_type == 'FronzenBN':
self.bn2 = FrozenBatchNorm2d(planes) # nn.BatchNorm2d(planes)
elif norm_type == 'SyncBN':
self.bn2 = nn.SyncBatchNorm(planes)
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
if norm_type == 'FronzenBN':
self.bn3 = FrozenBatchNorm2d(planes * self.expansion) # nn.BatchNorm2d(planes * self.expansion)
elif norm_type == 'SyncBN':
self.bn3 = nn.SyncBatchNorm(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
self.stride = stride
if stride > 1 or inplanes != planes * Bottleneck.expansion:
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
if norm_type == 'FronzenBN':
this_norm = FrozenBatchNorm2d(planes * self.expansion) #("1", nn.BatchNorm2d(planes * self.expansion))
elif norm_type == 'SyncBN':
this_norm = nn.SyncBatchNorm(planes * self.expansion)
self.downsample = nn.Sequential(OrderedDict([
("-1", nn.AvgPool2d(stride)),
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
("1", this_norm), #("1", nn.BatchNorm2d(planes * self.expansion))
]))
def forward(self, x: torch.Tensor):
identity = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.relu(self.bn2(self.conv2(out)))
out = self.avgpool(out)
out = self.bn3(self.conv3(out))
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class AttentionPool2d(nn.Module):
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
x, _ = F.multi_head_attention_forward(
query=x, key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x[0]
class ModifiedResNet(Backbone):
"""
Extended from CLIP implementation. It contains following changes:
1. change all nn.BatchNorm2d() to FrozenBatchNorm2d(), due to small batch size of detection training
2. add self._out_feature_strides according to standard ResNet
2. modify forward() to be compatible with Detectron2
3. add freeze() and output_shape() to be compatible with Detectron2
4. add build_clip_resnet_backbone() to build this ModifiedResNet
A ResNet class that is similar to torchvision's but contains the following changes:
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
- The final pooling layer is a QKV attention instead of an average pool
"""
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64,
out_features=None, freeze_at=0, depth=None, pool_vec=True, create_att_pool=False, norm_type='FronzenBN'):
super().__init__()
self.output_dim = output_dim
self.input_resolution = input_resolution
self.norm_type = norm_type
# the 3-layer stem
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
if norm_type == 'FronzenBN':
self.bn1 = FrozenBatchNorm2d(width // 2) # nn.BatchNorm2d(width // 2)
elif norm_type == 'SyncBN':
self.bn1 = nn.SyncBatchNorm(width // 2)
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
if norm_type == 'FronzenBN':
self.bn2 = FrozenBatchNorm2d(width // 2) # nn.BatchNorm2d(width // 2)
elif norm_type == 'SyncBN':
self.bn2 = nn.SyncBatchNorm(width // 2)
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
if norm_type == 'FronzenBN':
self.bn3 = FrozenBatchNorm2d(width) # nn.BatchNorm2d(width)
elif norm_type == 'SyncBN':
self.bn3 = nn.SyncBatchNorm(width)
self.avgpool = nn.AvgPool2d(2)
self.relu = nn.ReLU(inplace=True)
# residual layers
self._inplanes = width # this is a *mutable* variable used during construction
self.layer1 = self._make_layer(width, layers[0])
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
if 'res5' in out_features: # FPN
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
else: # C4, layer4 created here won't be used in backbone, but used in roi_head
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) # None
self.pool_vec = pool_vec
if self.pool_vec or create_att_pool: # pool a vector representation for an image
embed_dim = width * 32 # the ResNet feature dimension
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
# if create_att_pool: # freeze attnpool layer
# for p in self.attnpool.parameters(): p.requires_grad = False
self._out_features = out_features if out_features else []
if depth in [50,101]: # resnet50 or resnet 101
# FPN: ["res2", "res3", "res4", "res5"]; C4: ["res4"]
self._out_feature_channels = {'stem': 64, 'res2': 256, 'res3': 512, 'res4': 1024, 'res5': 2048} if 'res5' in self._out_features \
else {'stem': 64, 'res2': 256, 'res3': 512, 'res4': 1024}
self._out_feature_strides = {'stem': 4, 'res2': 4, 'res3': 8, 'res4': 16, 'res5': 32} if 'res5' in self._out_features \
else {'stem': 4, 'res2': 4, 'res3': 8, 'res4': 16} # anti-aliasing strided conv???
elif depth in [200]: # resnet50x4
# FPN: ["res2", "res3", "res4", "res5"]; C4: ["res4"]
self._out_feature_channels = {'stem': 80, 'res2': 320, 'res3': 640, 'res4': 1280, 'res5': 2560} if 'res5' in self._out_features \
else {'stem': 80, 'res2': 320, 'res3': 640, 'res4': 1280}
self._out_feature_strides = {'stem': 4, 'res2': 4, 'res3': 8, 'res4': 16, 'res5': 32} if 'res5' in self._out_features \
else {'stem': 4, 'res2': 4, 'res3': 8, 'res4': 16} # anti-aliasing strided conv???
self.freeze(freeze_at)
def _make_layer(self, planes, blocks, stride=1):
layers = [Bottleneck(self._inplanes, planes, stride, norm_type=self.norm_type)]
self._inplanes = planes * Bottleneck.expansion
for _ in range(1, blocks):
layers.append(Bottleneck(self._inplanes, planes, norm_type=self.norm_type))
return nn.Sequential(*layers)
def forward(self, x):
def stem(x):
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
x = self.relu(bn(conv(x)))
x = self.avgpool(x)
return x
assert x.dim() == 4, f"ResNet takes an input of shape (N, C, H, W). Got {x.shape} instead!"
outputs = {}
x = x.type(self.conv1.weight.dtype) # det2 resnet50: [3, 800, 1216]; CLIP resnet50: [3, 224, 224]
x = stem(x) # det2 resnet50: [64, 200, 304]; CLIP resnet50: [64, 56, 56]
if "stem" in self._out_features:
outputs["stem"] = x
x = self.layer1(x) # det2 resnet50: [256, 200, 304]; CLIP resnet50: [256, 56, 56]
outputs['res2'] = x if "res2" in self._out_features else None
x = self.layer2(x) # det2 resnet50: [512, 100, 152]; CLIP resnet50: [512, 28, 28]
outputs['res3'] = x if "res3" in self._out_features else None
x = self.layer3(x) # det2 resnet50: [1024, 50, 76]; CLIP resnet50: [1024, 14, 14]
outputs['res4'] = x if "res4" in self._out_features else None
x = self.layer4(x) if "res5" in self._out_features else x # det2 resnet50: [2048, 25, 38]; CLIP resnet50: [2048, 7, 7]
outputs['res5'] = x if "res5" in self._out_features else None
if self.pool_vec: # pool a vector representation for an image, for global image classification
x = self.attnpool(x) # CLIP resnet50: [1024]
return x
else: # for FPN
return outputs
def freeze(self, freeze_at=0):
"""
Freeze the first several stages of the ResNet. Commonly used in
fine-tuning.
Layers that produce the same feature map spatial size are defined as one
"stage" by :paper:`FPN`.
Args:
freeze_at (int): number of stages to freeze.
`1` means freezing the stem. `2` means freezing the stem and
one residual stage, etc.
Returns:
nn.Module: this ResNet itself
"""
def cnnblockbase_freeze(nn_module):
"""
Make this block not trainable.
This method sets all parameters to `requires_grad=False`,
and convert all BatchNorm layers to FrozenBatchNorm
Returns:
the block itself
"""
for p in nn_module.parameters():
p.requires_grad = False
FrozenBatchNorm2d.convert_frozen_batchnorm(nn_module)
if freeze_at >= 1: # stem
cnnblockbase_freeze(self.conv1)
cnnblockbase_freeze(self.bn1)
cnnblockbase_freeze(self.conv2)
cnnblockbase_freeze(self.bn2)
cnnblockbase_freeze(self.conv3)
cnnblockbase_freeze(self.bn3)
# each stage is a torch.nn.modules.container.Sequential
for idx, stage in enumerate([self.layer1, self.layer2, self.layer3, self.layer4], start=2):
if freeze_at >= idx:
for block in stage.children(): # each block is a Bottleneck
cnnblockbase_freeze(block)
return self
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in self._out_features
}
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor):
return self.resblocks(x)
class VisualTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
def forward(self, x: torch.Tensor):
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x[:, 0, :])
if self.proj is not None:
x = x @ self.proj
return x
class CLIP(Backbone):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
out_features,
freeze_at,
):
super().__init__()
self.context_length = context_length
if isinstance(vision_layers, (tuple, list)):
vision_heads = vision_width * 32 // 64
self.visual = ModifiedResNet(
layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width,
out_features=out_features,
freeze_at=freeze_at,
)
else:
vision_heads = vision_width // 64
self.visual = VisualTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
if isinstance(self.visual, ModifiedResNet):
if self.visual.attnpool is not None:
std = self.visual.attnpool.c_proj.in_features ** -0.5
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
for name, param in resnet_block.named_parameters():
if name.endswith("bn3.weight"):
nn.init.zeros_(param)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image):
return self.visual(image.type(self.dtype))
def encode_text(self, text, norm=True):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
if norm:
x = x / x.norm(dim=-1, keepdim=True)
return x
def forward(self, image, text):
image_features = self.encode_image(image)
text_features = self.encode_text(text)
# normalized features
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logit_scale * text_features @ image_features.t()
# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text
def convert_weights(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
if isinstance(l, nn.MultiheadAttention):
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.half()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.half()
model.apply(_convert_weights_to_fp16)
def build_model(state_dict: dict):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
model = CLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
)
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in state_dict:
del state_dict[key]
convert_weights(model)
model.load_state_dict(state_dict)
return model.eval()
@BACKBONE_REGISTRY.register()
def build_vit_clip(cfg, input_shape):
"""
Create the whole CLIP instance from config.
Returns:
CLIP: a :class:`CLIP` instance.
"""
# port standard ResNet config to CLIP ModifiedResNet
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
out_features = ['res5'] # includes the whole ResNet # cfg.MODEL.RESNETS.OUT_FEATURES
depth = cfg.MODEL.RESNETS.DEPTH
# num_blocks_per_stage = {
# 18: [2, 2, 2, 2],
# 34: [3, 4, 6, 3],
# 50: [3, 4, 6, 3],
# 101: [3, 4, 23, 3],
# 152: [3, 8, 36, 3],
# }[depth]
vision_layers = 12 # num_blocks_per_stage
vision_width = 768 # cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# default configs of CLIP
embed_dim = 512 # 1024
image_resolution = 224
vision_patch_size = 32 # None
context_length = 77
vocab_size = 49408
transformer_width = 512
transformer_heads = 8
transformer_layers = 12
model = CLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers,
out_features, freeze_at
)
return model
@BACKBONE_REGISTRY.register()
def build_resnet_clip(cfg, input_shape):
"""
Create the whole CLIP instance from config.
Returns:
CLIP: a :class:`CLIP` instance.
"""
# port standard ResNet config to CLIP ModifiedResNet
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
out_features = ['res5'] # includes the whole ResNet # cfg.MODEL.RESNETS.OUT_FEATURES
depth = cfg.MODEL.RESNETS.DEPTH
num_blocks_per_stage = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
200: [4, 6, 10, 6], # flag for ResNet50x4
}[depth]
vision_layers = num_blocks_per_stage
vision_width = {
50: 64,
101: 64,
200: 80, # flag for ResNet50x4
}[depth] # cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# default configs of CLIP
embed_dim = {
50: 1024,
101: 512,
200: 640, # flag for ResNet50x4
}[depth]
vision_heads = vision_width * 32 // 64
image_resolution = {
50: 224,
101: 224,
200: 288, # flag for ResNet50x4
}[depth]
vision_patch_size = None
context_length = 77
vocab_size = 49408
transformer_width = {
50: 512,
101: 512,
200: 640, # flag for ResNet50x4
}[depth]
transformer_heads = {
50: 8,
101: 8,
200: 10, # flag for ResNet50x4
}[depth]
transformer_layers = 12
model = CLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers,
out_features, freeze_at
)
return model
@BACKBONE_REGISTRY.register()
def build_clip_resnet_backbone(cfg, input_shape):
"""
Create a CLIP ResNet instance from config.
Returns:
ModifiedResNet: a :class:`ModifiedResNet` instance.
"""
# port standard ResNet config to CLIP ModifiedResNet
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
out_features = cfg.MODEL.RESNETS.OUT_FEATURES
depth = cfg.MODEL.RESNETS.DEPTH
# num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
# width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
# bottleneck_channels = num_groups * width_per_group
# in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
# stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1
# res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION
# deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE
# deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED
# deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS
num_blocks_per_stage = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
200: [4, 6, 10, 6], # flag for ResNet50x4
}[depth]
vision_layers = num_blocks_per_stage
vision_width = {
50: 64,
101: 64,
200: 80, # flag for ResNet50x4
}[depth] # cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# default configs of CLIP ModifiedResNet, but not used if only building ModifiedResNet as backbone
embed_dim = {
50: 1024,
101: 512,
200: 640, # flag for ResNet50x4
}[depth]
vision_heads = vision_width * 32 // 64
image_resolution = {
50: 224,
101: 224,
200: 288, # flag for ResNet50x4
}[depth]
# if combine {ModifiedResNet of CLIP, C4, text emb as classifier}, then has to use att_pool to match dimension
create_att_pool = True if (cfg.MODEL.ROI_HEADS.NAME in ['CLIPRes5ROIHeads', 'CLIPStandardROIHeads'] and cfg.MODEL.CLIP.USE_TEXT_EMB_CLASSIFIER)\
or cfg.MODEL.ROI_HEADS.NAME == 'PretrainRes5ROIHeads' else False
return ModifiedResNet(layers=vision_layers,
output_dim=embed_dim,
heads=vision_heads,
input_resolution=image_resolution,
width=vision_width,
out_features=out_features,
freeze_at=freeze_at,
depth=depth,
pool_vec=False,
create_att_pool=create_att_pool,
)
class CLIPLangEncoder(nn.Module):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
out_features,
freeze_at,
):
super().__init__()
self.context_length = context_length
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask()
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
#self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.transformer.resblocks[0].mlp[0].weight.dtype # torch.float32, not sure whether need to be fp16 in pretraining
def encode_text(self, text, only_eot=True, norm=True):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding.type(self.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x).type(self.dtype)
if only_eot:
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
if norm:
x = x / x.norm(dim=-1, keepdim=True)
return x
else:
# return embeddings for all tokens, instead of the eot embedding as CLIP implementation below
x = x @ self.text_projection
if norm:
x = x / x.norm(dim=-1, keepdim=True)
return x
def build_clip_language_encoder(cfg):
"""
Create the CLIP language encoder instance from config.
Returns:
CLIP: a :class:`CLIP` instance.
"""
# port standard ResNet config to CLIP ModifiedResNet
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
out_features = ['res5'] # includes the whole ResNet # cfg.MODEL.RESNETS.OUT_FEATURES
depth = cfg.MODEL.RESNETS.DEPTH
num_blocks_per_stage = {
18: [2, 2, 2, 2],
34: [3, 4, 6, 3],
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
200: [4, 6, 10, 6], # flag for ResNet50x4
}[depth]
vision_layers = num_blocks_per_stage
vision_width = {
50: 64,
101: 64,
200: 80, # flag for ResNet50x4
}[depth] # cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
# default configs of CLIP
embed_dim = {
50: 1024,
101: 512,
200: 640, # flag for ResNet50x4
}[depth]
vision_heads = vision_width * 32 // 64
image_resolution = {
50: 224,
101: 224,
200: 288, # flag for ResNet50x4
}[depth]
vision_patch_size = None
context_length = 77
vocab_size = 49408
transformer_width = {
50: 512,
101: 512,
200: 640, # flag for ResNet50x4
}[depth]
transformer_heads = {
50: 8,
101: 8,
200: 10, # flag for ResNet50x4
}[depth]
transformer_layers = 12
model = CLIPLangEncoder(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers,
out_features, freeze_at
)
return model |