Spaces:
Runtime error
Runtime error
File size: 10,281 Bytes
4121bec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
from collections import OrderedDict
from typing import Tuple, Union
import logging
import os
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from timm.models.layers import DropPath, trunc_normal_
from .backbone import Backbone
from .build import BACKBONE_REGISTRY
from .det_swin import SwinTransformer
from ..text_encoder import build_text_encoder
from ..text_encoder import build_tokenizer
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
pdtype = x.dtype
x = x.float()
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x.to(pdtype) + self.bias
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self,
d_model: int,
n_head: int,
attn_mask: torch.Tensor = None,
drop_path: float = 0.0):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) \
if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.drop_path(self.attention(self.ln_1(x)))
x = x + self.drop_path(self.mlp(self.ln_2(x)))
return x
class Transformer(nn.Module):
def __init__(self,
context_length: int,
vocab_size: int,
width: int,
layers: int,
heads: int,
drop_path: float = 0.0):
super().__init__()
self.token_embedding = nn.Embedding(vocab_size, width)
self.context_length = context_length
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, width)
)
self.width = width
self.layers = layers
attn_mask = self.build_attention_mask()
dpr = [x.item() for x in torch.linspace(0, drop_path, layers)] # stochastic depth decay rule
self.resblocks = nn.Sequential(
*[
ResidualAttentionBlock(width, heads, attn_mask, dpr[i])
for i in range(layers)
]
)
self.ln_final = LayerNorm(width)
trunc_normal_(self.positional_embedding, std=.02)
# nn.init.normal_(self.token_embedding, std=.02)
trunc_normal_(self.token_embedding.weight, std=.02)
self.apply(self._init_weights)
def build_attention_mask(self):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def _init_weights(self, m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d)):
nn.init.constant_(m.bias, 0)
@torch.jit.ignore
def no_weight_decay(self):
return {
'positional_embedding',
'token_embedding',
}
def forward(self, text: torch.Tensor):
x = self.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.resblocks(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)]
return x
class CLIP(Backbone):
def __init__(self, config: dict):
super().__init__()
spec_text = config['MODEL']['SPEC']['TEXT']
assert spec_text['TOKENIZER'] == 'clip', 'Only support clip tokenizer'
self.tokenizer_style = spec_text['TOKENIZER']
self.tokenizer = build_tokenizer(spec_text)
self.text_encoder = build_text_encoder(spec_text, self.tokenizer, True)
embed_dim = config['MODEL']['SPEC']['EMBED_DIM']
self.text_projection = nn.Parameter(
torch.empty(spec_text['WIDTH'], embed_dim)
)
spec_vision = config['MODEL']['SPEC']['VISION']
self.image_encoder = SwinTransformer(
patch_size=spec_vision['PATCH_SIZE'],
in_chans=spec_vision['IN_CHANS'],
embed_dim=spec_vision['EMBED_DIM'],
depths=spec_vision['DEPTHS'],
num_heads=spec_vision['NUM_HEADS'],
window_size=spec_vision['WINDOW_SIZE'],
mlp_ratio=spec_vision['MLP_RATIO'],
qkv_bias=spec_vision['QKV_BIAS'],
qk_scale=spec_vision.get('QK_SCALE', None),
drop_rate=spec_vision['DROP_RATE'],
attn_drop_rate=spec_vision['ATTN_DROP_RATE'],
drop_path_rate=spec_vision['DROP_PATH_RATE'],
ape=spec_vision['APE'],
patch_norm=spec_vision['PATCH_NORM'],
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
use_checkpoint=False,
)
width = spec_vision['EMBED_DIM'] * 2 ** (len(spec_vision['DEPTHS']) - 1)
self.image_projection = nn.Parameter(
torch.empty(width, embed_dim)
)
# self.logit_scale = nn.Parameter(torch.FloatTensor([np.log(1 / 0.07)]))
self.logit_scale = nn.Parameter(torch.ones([]))
trunc_normal_(self.text_projection, std=.02)
trunc_normal_(self.image_projection, std=.02)
def init_weights(self, pretrained='', pretrained_layers=[], verbose=True):
if os.path.isfile(pretrained):
pretrained_dict = torch.load(pretrained, map_location='cpu')
logger.info(f'=> loading pretrained model {pretrained}')
model_dict = self.state_dict()
pretrained_dict = {
k: v for k, v in pretrained_dict.items()
if k in model_dict.keys()
}
need_init_state_dict = {}
for k, v in pretrained_dict.items():
need_init = (
k.split('.')[0] in pretrained_layers
or pretrained_layers[0] is '*'
)
if need_init:
if verbose:
logging.info(f'=> init {k} from {pretrained}')
need_init_state_dict[k] = v
self.load_state_dict(need_init_state_dict, strict=False)
@torch.jit.ignore
def no_weight_decay(self):
no_weight_decay = {'logit_scale'}
for k in self.text_encoder.no_weight_decay():
no_weight_decay.add('text.'+k)
for k in self.image_encoder.no_weight_decay():
no_weight_decay.add('visual.'+k)
return no_weight_decay
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
@property
def dtype(self):
return self.image_encoder.conv1.weight.dtype
def encode_image(self, image, norm=True):
x = self.image_encoder(image)
return x
def encode_text(self, text, norm=True):
assert isinstance(text, str), "only support single query"
tokens = self.tokenizer(
text, padding='max_length', truncation=True, max_length=77, return_tensors='pt'
)
tokens = {key:(val.cuda() if next(self.parameters()).is_cuda else val) for key,val in tokens.items()}
x = self.text_encoder(**tokens)
x = x['last_hidden_state']
x = x[torch.arange(x.size(0)), tokens['input_ids'].argmax(dim=-1)]
x = x @ self.text_projection
if norm:
x = x / x.norm(dim=-1, keepdim=True)
return x
def forward(self, image):
features_image = self.image_encoder(image)
return features_image
@BACKBONE_REGISTRY.register()
def build_clip_swin_backbone(cfg, input_shape):
"""
Create a CLIP Swin instance from config.
Returns:
SwinTransformer: a :class:`SwinTransformer` instance.
"""
spec_vision = cfg.MODEL.CLIP.VISION
return SwinTransformer(
patch_size=spec_vision['PATCH_SIZE'],
in_chans=spec_vision['IN_CHANS'],
embed_dim=spec_vision['EMBED_DIM'],
depths=spec_vision['DEPTHS'],
num_heads=spec_vision['NUM_HEADS'],
window_size=spec_vision['WINDOW_SIZE'],
mlp_ratio=spec_vision['MLP_RATIO'],
qkv_bias=spec_vision['QKV_BIAS'],
qk_scale=spec_vision.get('QK_SCALE', None),
drop_rate=spec_vision['DROP_RATE'],
attn_drop_rate=spec_vision['ATTN_DROP_RATE'],
drop_path_rate=spec_vision['DROP_PATH_RATE'],
ape=spec_vision['APE'],
patch_norm=spec_vision['PATCH_NORM'],
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
use_checkpoint=False,
)
@BACKBONE_REGISTRY.register()
def build_clip_swin(cfg, input_shape):
"""
Create a CLIP Swin instance from config.
Returns:
SwinTransformer: a :class:`SwinTransformer` instance.
"""
return CLIP(cfg) |